The Arithmetic of Polynomial Dynamical Pairs (notice n° 1324990)

détails MARC
000 -LEADER
fixed length control field 01772cam a2200289zu 4500
003 - CONTROL NUMBER IDENTIFIER
control field FRCYB88956880
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250429181609.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250429s2022 fr | o|||||0|0|||eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780691235479
035 ## - SYSTEM CONTROL NUMBER
System control number FRCYB88956880
040 ## - CATALOGING SOURCE
Original cataloging agency FR-PaCSA
Language of cataloging en
Transcribing agency
Description conventions rda
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Favre, Charles
245 01 - TITLE STATEMENT
Title The Arithmetic of Polynomial Dynamical Pairs
Remainder of title (AMS-214)
Statement of responsibility, etc. ['Favre, Charles', 'Gauthier, Thomas']
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Name of producer, publisher, distributor, manufacturer Princeton University Press
Date of production, publication, distribution, manufacture, or copyright notice 2022
300 ## - PHYSICAL DESCRIPTION
Extent p.
336 ## - CONTENT TYPE
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type code c
Source rdamdedia
338 ## - CARRIER TYPE
Carrier type code c
Source rdacarrier
520 ## - SUMMARY, ETC.
Summary, etc. New mathematical research in arithmetic dynamicsIn The Arithmetic of Polynomial Dynamical Pairs, Charles Favre and Thomas Gauthier present new mathematical research in the field of arithmetic dynamics. Specifically, the authors study one-dimensional algebraic families of pairs given by a polynomial with a marked point. Combining tools from arithmetic geometry and holomorphic dynamics, they prove an “unlikely intersection” statement for such pairs, thereby demonstrating strong rigidity features for them. They further describe one-dimensional families in the moduli space of polynomials containing infinitely many postcritically finite parameters, proving the dynamical André-Oort conjecture for curves in this context, originally stated by Baker and DeMarco.This is a reader-friendly invitation to a new and exciting research area that brings together sophisticated tools from many branches of mathematics.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Favre, Charles
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Gauthier, Thomas
856 40 - ELECTRONIC LOCATION AND ACCESS
Access method Cyberlibris
Uniform Resource Identifier <a href="https://international.scholarvox.com/netsen/book/88956880">https://international.scholarvox.com/netsen/book/88956880</a>
Electronic format type text/html
Host name

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025