Nonlinearities and interactions between variables: Insights from interpretable machine learning methods for banking regulation (notice n° 1531363)

détails MARC
000 -LEADER
fixed length control field 01688cam a2200181 4500500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20251012014549.0
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title fre
042 ## - AUTHENTICATION CODE
Authentication code dc
100 10 - MAIN ENTRY--PERSONAL NAME
Personal name Durand, Pierre
Relator term author
245 00 - TITLE STATEMENT
Title Nonlinearities and interactions between variables: Insights from interpretable machine learning methods for banking regulation
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2025.<br/>
500 ## - GENERAL NOTE
General note 94
520 ## - SUMMARY, ETC.
Summary, etc. The aim of this article is to illustrate the usefulness of interpretable machine learning methods in the specific case of banking economics. In particular, we rely on a gradient boosting model to determine the optimal regulatory capital ratio within the framework of prudential banking regulation. To this end, we develop, on the one hand, a classification model whose purpose is to determine the impact of capital ratios on the probability of bank default, and, on the other hand, a regression model aimed at assessing the costs to banks’ performance associated with increased capital requirements. Using various interpretability tools (permutation importance, Shapley values, partial dependence plots, accumulated local effects), we found the following optimal values: 15% for the capital adequacy ratio and 10% for the leverage ratio. The determination of these values relies on highlighting the non-linear effects and interaction effects that characterize the relationships between the various variables studied.
700 10 - ADDED ENTRY--PERSONAL NAME
Personal name Le Quang, Gaёtan
Relator term author
700 10 - ADDED ENTRY--PERSONAL NAME
Personal name Vialfont, Arnold
Relator term author
786 0# - DATA SOURCE ENTRY
Note Revue d'économie politique | 134 | 6 | 2025-03-17 | p. 893-922 | 0373-2630
856 41 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://shs.cairn.info/journal-revue-deconomie-politique-2024-6-page-893?lang=en&redirect-ssocas=7080">https://shs.cairn.info/journal-revue-deconomie-politique-2024-6-page-893?lang=en&redirect-ssocas=7080</a>

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025