R Deep Learning Essentials (notice n° 1555172)

détails MARC
000 -LEADER
fixed length control field 03286cam a2200277zu 4500
003 - CONTROL NUMBER IDENTIFIER
control field FRCYB88843128
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20251020123725.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 251020s2016 fr | o|||||0|0|||eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781785280580
035 ## - SYSTEM CONTROL NUMBER
System control number FRCYB88843128
040 ## - CATALOGING SOURCE
Original cataloging agency FR-PaCSA
Language of cataloging en
Transcribing agency
Description conventions rda
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Wiley, Dr. Joshua F.
245 01 - TITLE STATEMENT
Title R Deep Learning Essentials
Statement of responsibility, etc. ['Wiley, Dr. Joshua F.']
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Name of producer, publisher, distributor, manufacturer Packt Publishing
Date of production, publication, distribution, manufacture, or copyright notice 2016
300 ## - PHYSICAL DESCRIPTION
Extent p.
336 ## - CONTENT TYPE
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type code c
Source rdamdedia
338 ## - CARRIER TYPE
Carrier type code c
Source rdacarrier
520 ## - SUMMARY, ETC.
Summary, etc. Build automatic classification and prediction models using unsupervised learningAbout This BookHarness the ability to build algorithms for unsupervised data using deep learning concepts with RMaster the common problems faced such as overfitting of data, anomalous datasets, image recognition, and performance tuning while building the modelsBuild models relating to neural networks, prediction and deep predictionWho This Book Is ForThis book caters to aspiring data scientists who are well versed with machine learning concepts with R and are looking to explore the deep learning paradigm using the packages available in R. You should have a fundamental understanding of the R language and be comfortable with statistical algorithms and machine learning techniques, but you do not need to be well versed with deep learning concepts.What You Will LearnSet up the R package H2O to train deep learning modelsUnderstand the core concepts behind deep learning modelsUse Autoencoders to identify anomalous data or outliersPredict or classify data automatically using deep neural networksBuild generalizable models using regularization to avoid overfitting the training dataIn DetailDeep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data by using model architectures. With the superb memory management and the full integration with multi-node big data platforms, the H2O engine has become more and more popular among data scientists in the field of deep learning.This book will introduce you to the deep learning package H2O with R and help you understand the concepts of deep learning. We will start by setting up important deep learning packages available in R and then move towards building models related to neural networks, prediction, and deep prediction, all of this with the help of real-life examples.After installing the H2O package, you will learn about prediction algorithms. Moving ahead, concepts such as overfitting data, anomalous data, and deep prediction models are explained. Finally, the book will cover concepts relating to tuning and optimizing models.Style and approachThis book takes a practical approach to showing you the concepts of deep learning with the R programming language. We will start with setting up important deep learning packages available in R and then move towards building models related to neural network, prediction, and deep prediction - and all of this with the help of real-life examples.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Wiley, Dr. Joshua F.
856 40 - ELECTRONIC LOCATION AND ACCESS
Access method Cyberlibris
Uniform Resource Identifier <a href="https://international.scholarvox.com/netsen/book/88843128">https://international.scholarvox.com/netsen/book/88843128</a>
Electronic format type text/html
Host name

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025