Accurate and effective latent concept modeling for ad hoc information retrieval (notice n° 402230)

détails MARC
000 -LEADER
fixed length control field 02561cam a2200313 4500500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250119075153.0
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title fre
042 ## - AUTHENTICATION CODE
Authentication code dc
100 10 - MAIN ENTRY--PERSONAL NAME
Personal name Deveaud, Romain
Relator term author
245 00 - TITLE STATEMENT
Title Accurate and effective latent concept modeling for ad hoc information retrieval
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2014.<br/>
500 ## - GENERAL NOTE
General note 69
520 ## - SUMMARY, ETC.
Summary, etc. Une requête est la représentation du besoin d’information d’un utilisateur, et est le résultat d’un processus cognitif complexe qui mène souvent à un mauvais choix de mots-clés. Nous proposons une méthode non supervisée pour la modélisation de concepts implicites d’une requête, dans le but de recréer la représentation conceptuelle du besoin d’information initial. Nous utilisons l’allocation de Dirichlet latente (LDA) pour détecter les concepts implicites de la requête en utilisant des documents pseudo-pertinents. Nous évaluons cette méthode en profondeur en utilisant deux collections de test de TREC. Nous trouvons notamment que notre approche permet de modéliser précisément les concepts implicites de la requête, tout en obtenant de bonnes performances dans le cadre d’une recherche de documents.
520 ## - SUMMARY, ETC.
Summary, etc. A keyword query is the representation of the information need of a user, and is the result of a complex cognitive process which often results in under-specification. We propose an unsupervised method namely Latent Concept Modeling (LCM) for mining and modeling latent search concepts in order to recreate the conceptual view of the original information need. We use Latent Dirichlet Allocation (LDA) to exhibit highly-specific query-related topics from pseudo-relevant feedback documents. We define these topics as the latent concepts of the user query. We perform a thorough evaluation of our approach over two large ad-hoc TREC collections. Our findings reveal that the proposed method accurately models latent concepts, while being very effective in a query expansion retrieval setting.
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element recherche d'information
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element LDA
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element retour de pertinence simulé
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element TREC
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element modélisation thématique
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element information retrieval
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element pseudo-relevance feedback
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element LDA
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element TREC
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element topic modeling
700 10 - ADDED ENTRY--PERSONAL NAME
Personal name SanJuan, Eric
Relator term author
700 10 - ADDED ENTRY--PERSONAL NAME
Personal name Bellot, Patrice
Relator term author
786 0# - DATA SOURCE ENTRY
Note Document numérique | 17 | 1 | 2014-06-01 | p. 61-84 | 1279-5127
856 41 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://shs.cairn.info/revue-document-numerique-2014-1-page-61?lang=en&redirect-ssocas=7080">https://shs.cairn.info/revue-document-numerique-2014-1-page-61?lang=en&redirect-ssocas=7080</a>

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025