Heterogeneity and cross-sectional dependence in panels: Heterogeneous vs. homogeneous estimators (notice n° 545819)

détails MARC
000 -LEADER
fixed length control field 02035cam a2200229 4500500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250121113829.0
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title fre
042 ## - AUTHENTICATION CODE
Authentication code dc
100 10 - MAIN ENTRY--PERSONAL NAME
Personal name Akgun, Oguzhan
Relator term author
245 00 - TITLE STATEMENT
Title Heterogeneity and cross-sectional dependence in panels: Heterogeneous vs. homogeneous estimators
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Date of publication, distribution, etc. 2021.<br/>
500 ## - GENERAL NOTE
General note 73
520 ## - SUMMARY, ETC.
Summary, etc. This paper focuses on the comparison of homogeneous and heterogeneous panel data estimators, including partially heterogeneous ones, in the presence of cross-sectional dependence generated by common factors and spatial error dependence. Our specifications allow us to consider and contrast weak cross-sectional dependence and strong cross-sectional dependence in a general linear heterogeneous panel data model. An overview of the estimation procedures, including heterogeneous, homogeneous, and partially heterogeneous estimators, is presented. Then, an extensive Monte Carlo study is conducted using a general framework encompassing recent contributions in the literature, especially in terms of considering common factors and spatial dependence simultaneously. Our simulation results show that, even for small individual and time dimensions, heterogeneous estimators perform better in terms of bias, root mean squared error, size, and size-adjusted power compared to homogeneous estimators. Lastly, the superiority of the heterogeneous estimators is confirmed by an empirical application relating fiscal decentralization and government size in 22 OECD countries over the period 1973–2017. JEL classification codes: C13, C23
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element agricultural sector
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element total factor productivity
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element common agricultural policy
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN)
Topical term or geographic name as entry element productivity surplus account method
700 10 - ADDED ENTRY--PERSONAL NAME
Personal name Pirotte, Alain
Relator term author
700 10 - ADDED ENTRY--PERSONAL NAME
Personal name Urga, Giovanni
Relator term author
786 0# - DATA SOURCE ENTRY
Note Revue d'économie politique | 131 | 1 | 2021-03-08 | p. 19-55 | 0373-2630
856 41 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://shs.cairn.info/journal-revue-d-economie-politique-2021-1-page-19?lang=en&redirect-ssocas=7080">https://shs.cairn.info/journal-revue-d-economie-politique-2021-1-page-19?lang=en&redirect-ssocas=7080</a>

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025