Driver Adaptive Task Allocation: A Field Driving Study (notice n° 590311)
[ vue normale ]
000 -LEADER | |
---|---|
fixed length control field | 02502cam a2200241 4500500 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20250121144752.0 |
041 ## - LANGUAGE CODE | |
Language code of text/sound track or separate title | fre |
042 ## - AUTHENTICATION CODE | |
Authentication code | dc |
100 10 - MAIN ENTRY--PERSONAL NAME | |
Personal name | Lei, S. |
Relator term | author |
245 00 - TITLE STATEMENT | |
Title | Driver Adaptive Task Allocation: A Field Driving Study |
260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
Date of publication, distribution, etc. | 2017.<br/> |
500 ## - GENERAL NOTE | |
General note | 91 |
520 ## - SUMMARY, ETC. | |
Summary, etc. | L’allocation adaptative de tâche (AAT) offre de nouvelles perspectives pour l’interaction homme-machine dans les systèmes hautement automatisés. De nombreuses recherches ont démontré que les signaux psychophysiologiques peuvent être utilisés pour fermer la boucle en adaptant les tâches en fonction de l’état de l’opérateur humain. Cette présente étude établit la faisabilité de la réallocation de tâche dans le contexte de la conduite automobile. La charge de travail du conducteur était estimée en temps à partir d’un électroencéphalographe (EEG) et les mesures obtenues servaient à adapter dynamiquement une tâche secondaire. Les résultats ont montré que l’AAT était bénéfique pour maintenir la charge de travail du conducteur à un niveau modéré. En revanche, et d’une manière générale, pas l’amélioration de la performance allocation adaptative de tâche. |
520 ## - SUMMARY, ETC. | |
Summary, etc. | Adaptive task allocation (ATA) provides a new solution for human-machine interaction in a highly automated system. Previous research demonstrates that psychophysiological signals yield sensitive information about human functional states, which can be used to build a closed loop for human-machine interaction to reallocate the tasks upon the status of human operator. The present study investigates the feasibility of adaptive task allocation in a field driving context. Driver’s mental workload was evaluated by electroencephalogram (EEG) in real-time and this result was used to dynamically adapt a secondary task allocated to driver. The results showed that ATA has a potential benefit to maintain a driver’s workload in a moderate level. However, generally, no significant increases in task performance were found between ATA and without ATA conditions. |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | Adaptive task allocation |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | car driving |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | mental workload |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | human-machine interaction |
700 10 - ADDED ENTRY--PERSONAL NAME | |
Personal name | Toriizuka, Takashi |
Relator term | author |
700 10 - ADDED ENTRY--PERSONAL NAME | |
Personal name | Roetting, Mattias |
Relator term | author |
786 0# - DATA SOURCE ENTRY | |
Note | Le travail humain | 80 | 1 | 2017-03-23 | p. 93-112 | 0041-1868 |
856 41 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://shs.cairn.info/journal-le-travail-humain-2017-1-page-93?lang=en&redirect-ssocas=7080">https://shs.cairn.info/journal-le-travail-humain-2017-1-page-93?lang=en&redirect-ssocas=7080</a> |
Pas d'exemplaire disponible.
Réseaux sociaux