R: Predictive Analysis (notice n° 65331)

détails MARC
000 -LEADER
fixed length control field 04485cam a2200301zu 4500
003 - CONTROL NUMBER IDENTIFIER
control field FRCYB88842754
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250107215708.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250107s2017 fr | o|||||0|0|||eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781788290371
035 ## - SYSTEM CONTROL NUMBER
System control number FRCYB88842754
040 ## - CATALOGING SOURCE
Original cataloging agency FR-PaCSA
Language of cataloging en
Transcribing agency
Description conventions rda
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Fischetti, Tony
245 01 - TITLE STATEMENT
Title R: Predictive Analysis
Statement of responsibility, etc. ['Fischetti, Tony', 'Mayor, Eric', 'Forte, Rui Miguel']
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Name of producer, publisher, distributor, manufacturer Packt Publishing
Date of production, publication, distribution, manufacture, or copyright notice 2017
300 ## - PHYSICAL DESCRIPTION
Extent p.
336 ## - CONTENT TYPE
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type code c
Source rdamdedia
338 ## - CARRIER TYPE
Carrier type code c
Source rdacarrier
520 ## - SUMMARY, ETC.
Summary, etc. Master the art of predictive modelingAbout This BookLoad, wrangle, and analyze your data using the world's most powerful statistical programming languageFamiliarize yourself with the most common data mining tools of R, such as k-means, hierarchical regression, linear regression, Naive Bayes, decision trees, text mining and so on.We emphasize important concepts, such as the bias-variance trade-off and over-fitting, which are pervasive in predictive modelingWho This Book Is ForIf you work with data and want to become an expert in predictive analysis and modeling, then this Learning Path will serve you well. It is intended for budding and seasoned practitioners of predictive modeling alike. You should have basic knowledge of the use of R, although it's not necessary to put this Learning Path to great use.What You Will LearnGet to know the basics of R's syntax and major data structuresWrite functions, load data, and install packagesUse different data sources in R and know how to interface with databases, and request and load JSON and XMLIdentify the challenges and apply your knowledge about data analysis in R to imperfect real-world dataPredict the future with reasonably simple algorithmsUnderstand key data visualization and predictive analytic skills using RUnderstand the language of models and the predictive modeling processIn DetailPredictive analytics is a field that uses data to build models that predict a future outcome of interest. It can be applied to a range of business strategies and has been a key player in search advertising and recommendation engines.The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions in the real world. This Learning Path will provide you with all the steps you need to master the art of predictive modeling with R.We start with an introduction to data analysis with R, and then gradually you'll get your feet wet with predictive modeling. You will get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. You will be able to solve the difficulties relating to performing data analysis in practice and find solutions to working with “messy data”, large data, communicating results, and facilitating reproducibility. You will then perform key predictive analytics tasks using R, such as train and test predictive models for classification and regression tasks, score new data sets and so on. By the end of this Learning Path, you will have explored and tested the most popular modeling techniques in use on real-world data sets and mastered a diverse range of techniques in predictive analytics.This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products:Data Analysis with R, Tony FischettiLearning Predictive Analytics with R, Eric MayorMastering Predictive Analytics with R, Rui Miguel ForteStyle and approachLearn data analysis using engaging examples and fun exercises, and with a gentle and friendly but comprehensive "learn-by-doing" approach. This is a practical course, which analyzes compelling data about life, health, and death with the help of tutorials. It offers you a useful way of interpreting the data that's specific to this course, but that can also be applied to any other data. This course is designed to be both a guide and a reference for moving beyond the basics of predictive modeling.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Fischetti, Tony
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Mayor, Eric
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Forte, Rui Miguel
856 40 - ELECTRONIC LOCATION AND ACCESS
Access method Cyberlibris
Uniform Resource Identifier <a href="https://international.scholarvox.com/netsen/book/88842754">https://international.scholarvox.com/netsen/book/88842754</a>
Electronic format type text/html
Host name

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025