Practical Time Series Analysis (notice n° 69990)

détails MARC
000 -LEADER
fixed length control field 03713cam a2200289zu 4500
003 - CONTROL NUMBER IDENTIFIER
control field FRCYB88855162
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250107225807.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250107s2017 fr | o|||||0|0|||eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781788290227
035 ## - SYSTEM CONTROL NUMBER
System control number FRCYB88855162
040 ## - CATALOGING SOURCE
Original cataloging agency FR-PaCSA
Language of cataloging en
Transcribing agency
Description conventions rda
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Pal, Dr. Avishek
245 01 - TITLE STATEMENT
Title Practical Time Series Analysis
Statement of responsibility, etc. ['Pal, Dr. Avishek', 'Prakash, Dr. Pks']
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Name of producer, publisher, distributor, manufacturer Packt Publishing
Date of production, publication, distribution, manufacture, or copyright notice 2017
300 ## - PHYSICAL DESCRIPTION
Extent p.
336 ## - CONTENT TYPE
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type code c
Source rdamdedia
338 ## - CARRIER TYPE
Carrier type code c
Source rdacarrier
520 ## - SUMMARY, ETC.
Summary, etc. Step by Step guide filled with real world practical examples.About This BookGet your first experience with data analysis with one of the most powerful types of analysis—time-series.Find patterns in your data and predict the future pattern based on historical data.Learn the statistics, theory, and implementation of Time-series methods using this example-rich guideWho This Book Is ForThis book is for anyone who wants to analyze data over time and/or frequency. A statistical background is necessary to quickly learn the analysis methods.What You Will LearnUnderstand the basic concepts of Time Series Analysis and appreciate its importance for the success of a data science projectDevelop an understanding of loading, exploring, and visualizing time-series dataExplore auto-correlation and gain knowledge of statistical techniques to deal with non-stationarity time seriesTake advantage of exponential smoothing to tackle noise in time series dataLearn how to use auto-regressive models to make predictions using time-series dataBuild predictive models on time series using techniques based on auto-regressive moving averagesDiscover recent advancements in deep learning to build accurate forecasting models for time seriesGain familiarity with the basics of Python as a powerful yet simple to write programming languageIn DetailTime Series Analysis allows us to analyze data which is generated over a period of time and has sequential interdependencies between the observations. This book describes special mathematical tricks and techniques which are geared towards exploring the internal structures of time series data and generating powerful descriptive and predictive insights. Also, the book is full of real-life examples of time series and their analyses using cutting-edge solutions developed in Python.The book starts with descriptive analysis to create insightful visualizations of internal structures such as trend, seasonality and autocorrelation. Next, the statistical methods of dealing with autocorrelation and non-stationary time series are described. This is followed by exponential smoothing to produce meaningful insights from noisy time series data. At this point, we shift focus towards predictive analysis and introduce autoregressive models such as ARMA and ARIMA for time series forecasting. Later, powerful deep learning methods are presented, to develop accurate forecasting models for complex time series, and under the availability of little domain knowledge. All the topics are illustrated with real-life problem scenarios and their solutions by best-practice implementations in Python.The book concludes with the Appendix, with a brief discussion of programming and solving data science problems using Python.Style and approachThis book takes the readers from the basic to advance level of Time series analysis in a very practical and real world use cases.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Pal, Dr. Avishek
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Prakash, Dr. Pks
856 40 - ELECTRONIC LOCATION AND ACCESS
Access method Cyberlibris
Uniform Resource Identifier <a href="https://international.scholarvox.com/netsen/book/88855162">https://international.scholarvox.com/netsen/book/88855162</a>
Electronic format type text/html
Host name

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025