Machine Learning Projects for Mobile Applications (notice n° 71428)

détails MARC
000 -LEADER
fixed length control field 03193cam a2200277zu 4500
003 - CONTROL NUMBER IDENTIFIER
control field FRCYB88865388
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250107231407.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250108s2018 fr | o|||||0|0|||eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781788994590
035 ## - SYSTEM CONTROL NUMBER
System control number FRCYB88865388
040 ## - CATALOGING SOURCE
Original cataloging agency FR-PaCSA
Language of cataloging en
Transcribing agency
Description conventions rda
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Ng, Karthikeyan
245 01 - TITLE STATEMENT
Title Machine Learning Projects for Mobile Applications
Statement of responsibility, etc. ['Ng, Karthikeyan']
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Name of producer, publisher, distributor, manufacturer Packt Publishing
Date of production, publication, distribution, manufacture, or copyright notice 2018
300 ## - PHYSICAL DESCRIPTION
Extent p.
336 ## - CONTENT TYPE
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type code c
Source rdamdedia
338 ## - CARRIER TYPE
Carrier type code c
Source rdacarrier
520 ## - SUMMARY, ETC.
Summary, etc. Bring magic to your mobile apps using TensorFlow Lite and Core ML Key Features Explore machine learning using classification, analytics, and detection tasks. Work with image, text and video datasets to delve into real-world tasks Build apps for Android and iOS using Caffe, Core ML and Tensorflow Lite Book Description Machine learning is a technique that focuses on developing computer programs that can be modified when exposed to new data. We can make use of it for our mobile applications and this book will show you how to do so. The book starts with the basics of machine learning concepts for mobile applications and how to get well equipped for further tasks. You will start by developing an app to classify age and gender using Core ML and Tensorflow Lite. You will explore neural style transfer and get familiar with how deep CNNs work. We will also take a closer look at Google's ML Kit for the Firebase SDK for mobile applications. You will learn how to detect handwritten text on mobile. You will also learn how to create your own Snapchat filter by making use of facial attributes and OpenCV. You will learn how to train your own food classification model on your mobile; all of this will be done with the help of deep learning techniques. Lastly, you will build an image classifier on your mobile, compare its performance, and analyze the results on both mobile and cloud using TensorFlow Lite with an RCNN. By the end of this book, you will not only have mastered the concepts of machine learning but also learned how to resolve problems faced while building powerful apps on mobiles using TensorFlow Lite, Caffe2, and Core ML. What you will learn Demystify the machine learning landscape on mobile Age and gender detection using TensorFlow Lite and Core ML Use ML Kit for Firebase for in-text detection, face detection, and barcode scanning Create a digit classifier using adversarial learning Build a cross-platform application with face filters using OpenCV Classify food using deep CNNs and TensorFlow Lite on iOS Who this book is for Machine Learning Projects for Mobile Applications is for you if you are a data scientist, machine learning expert, deep learning, or AI enthusiast who fancies mastering machine learning and deep learning implementation with practical examples using TensorFlow Lite and CoreML. Basic knowledge of Python programming language would be an added advantage.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Ng, Karthikeyan
856 40 - ELECTRONIC LOCATION AND ACCESS
Access method Cyberlibris
Uniform Resource Identifier <a href="https://international.scholarvox.com/netsen/book/88865388">https://international.scholarvox.com/netsen/book/88865388</a>
Electronic format type text/html
Host name

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025