Hands-On Deep Learning Architectures with Python (notice n° 71894)

détails MARC
000 -LEADER
fixed length control field 03483cam a2200289zu 4500
003 - CONTROL NUMBER IDENTIFIER
control field FRCYB88869963
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250107231924.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250108s2019 fr | o|||||0|0|||eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781788998086
035 ## - SYSTEM CONTROL NUMBER
System control number FRCYB88869963
040 ## - CATALOGING SOURCE
Original cataloging agency FR-PaCSA
Language of cataloging en
Transcribing agency
Description conventions rda
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Liu, Yuxi (Hayden)
245 01 - TITLE STATEMENT
Title Hands-On Deep Learning Architectures with Python
Statement of responsibility, etc. ['Liu, Yuxi (Hayden)', 'Mehta, Saransh']
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Name of producer, publisher, distributor, manufacturer Packt Publishing
Date of production, publication, distribution, manufacture, or copyright notice 2019
300 ## - PHYSICAL DESCRIPTION
Extent p.
336 ## - CONTENT TYPE
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type code c
Source rdamdedia
338 ## - CARRIER TYPE
Carrier type code c
Source rdacarrier
520 ## - SUMMARY, ETC.
Summary, etc. Concepts, tools, and techniques to explore deep learning architectures and methodologies Key Features Explore advanced deep learning architectures using various datasets and frameworks Implement deep architectures for neural network models such as CNN, RNN, GAN, and many more Discover design patterns and different challenges for various deep learning architectures Book Description Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems. Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations. By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world. What you will learn Implement CNNs, RNNs, and other commonly used architectures with Python Explore architectures such as VGGNet, AlexNet, and GoogLeNet Build deep learning architectures for AI applications such as face and image recognition, fraud detection, and many more Understand the architectures and applications of Boltzmann machines and autoencoders with concrete examples Master artificial intelligence and neural network concepts and apply them to your architecture Understand deep learning architectures for mobile and embedded systems Who this book is for If you're a data scientist, machine learning developer/engineer, or deep learning practitioner, or are curious about AI and want to upgrade your knowledge of various deep learning architectures, this book will appeal to you. You are expected to have some knowledge of statistics and machine learning algorithms to get the best out of this book
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Liu, Yuxi (Hayden)
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Mehta, Saransh
856 40 - ELECTRONIC LOCATION AND ACCESS
Access method Cyberlibris
Uniform Resource Identifier <a href="https://international.scholarvox.com/netsen/book/88869963">https://international.scholarvox.com/netsen/book/88869963</a>
Electronic format type text/html
Host name

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025