Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques (notice n° 72301)

détails MARC
000 -LEADER
fixed length control field 02327cam a2200277zu 4500
003 - CONTROL NUMBER IDENTIFIER
control field FRCYB88873389
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250107232351.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250108s2019 fr | o|||||0|0|||eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780128174449
035 ## - SYSTEM CONTROL NUMBER
System control number FRCYB88873389
040 ## - CATALOGING SOURCE
Original cataloging agency FR-PaCSA
Language of cataloging en
Transcribing agency
Description conventions rda
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Subasi, Abdulhamit
245 01 - TITLE STATEMENT
Title Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques
Remainder of title A MATLAB Based Approach
Statement of responsibility, etc. ['Subasi, Abdulhamit']
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Name of producer, publisher, distributor, manufacturer Elsevier Science
Date of production, publication, distribution, manufacture, or copyright notice 2019
300 ## - PHYSICAL DESCRIPTION
Extent p.
336 ## - CONTENT TYPE
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type code c
Source rdamdedia
338 ## - CARRIER TYPE
Carrier type code c
Source rdacarrier
520 ## - SUMMARY, ETC.
Summary, etc. Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis.Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interactionExplains how to apply machine learning techniques to EEG, ECG and EMG signalsGives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Subasi, Abdulhamit
856 40 - ELECTRONIC LOCATION AND ACCESS
Access method Cyberlibris
Uniform Resource Identifier <a href="https://international.scholarvox.com/netsen/book/88873389">https://international.scholarvox.com/netsen/book/88873389</a>
Electronic format type text/html
Host name

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025