Advanced Natural Language Processing with TensorFlow 2 (notice n° 73641)

détails MARC
000 -LEADER
fixed length control field 03671cam a2200277zu 4500
003 - CONTROL NUMBER IDENTIFIER
control field FRCYB88910717
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250107233915.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250108s2021 fr | o|||||0|0|||eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781800200937
035 ## - SYSTEM CONTROL NUMBER
System control number FRCYB88910717
040 ## - CATALOGING SOURCE
Original cataloging agency FR-PaCSA
Language of cataloging en
Transcribing agency
Description conventions rda
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Bansal, Ashish
245 01 - TITLE STATEMENT
Title Advanced Natural Language Processing with TensorFlow 2
Statement of responsibility, etc. ['Bansal, Ashish']
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Name of producer, publisher, distributor, manufacturer Packt Publishing
Date of production, publication, distribution, manufacture, or copyright notice 2021
300 ## - PHYSICAL DESCRIPTION
Extent p.
336 ## - CONTENT TYPE
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type code c
Source rdamdedia
338 ## - CARRIER TYPE
Carrier type code c
Source rdacarrier
520 ## - SUMMARY, ETC.
Summary, etc. One-stop solution for NLP practitioners, ML developers, and data scientists to build effective NLP systems that can perform real-world complicated tasksKey FeaturesApply deep learning algorithms and techniques such as BiLSTMS, CRFs, BPE and more using TensorFlow 2Explore applications like text generation, summarization, weakly supervised labelling and moreRead cutting edge material with seminal papers provided in the GitHub repository with full working codeBook DescriptionRecently, there have been tremendous advances in NLP, and we are now moving from research labs into practical applications. This book comes with a perfect blend of both the theoretical and practical aspects of trending and complex NLP techniques.The book is focused on innovative applications in the field of NLP, language generation, and dialogue systems. It helps you apply the concepts of pre-processing text using techniques such as tokenization, parts of speech tagging, and lemmatization using popular libraries such as Stanford NLP and SpaCy. You will build Named Entity Recognition (NER) from scratch using Conditional Random Fields and Viterbi Decoding on top of RNNs.The book covers key emerging areas such as generating text for use in sentence completion and text summarization, bridging images and text by generating captions for images, and managing dialogue aspects of chatbots. You will learn how to apply transfer learning and fine-tuning using TensorFlow 2.Further, it covers practical techniques that can simplify the labelling of textual data. The book also has a working code that is adaptable to your use cases for each tech piece.By the end of the book, you will have an advanced knowledge of the tools, techniques and deep learning architecture used to solve complex NLP problems.What you will learnGrasp important pre-steps in building NLP applications like POS taggingUse transfer and weakly supervised learning using libraries like SnorkelDo sentiment analysis using BERTApply encoder-decoder NN architectures and beam search for summarizing textsUse Transformer models with attention to bring images and text togetherBuild apps that generate captions and answer questions about images using custom TransformersUse advanced TensorFlow techniques like learning rate annealing, custom layers, and custom loss functions to build the latest DeepNLP modelsWho this book is forThis is not an introductory book and assumes the reader is familiar with basics of NLP and has fundamental Python skills, as well as basic knowledge of machine learning and undergraduate-level calculus and linear algebra.The readers who can benefit the most from this book include intermediate ML developers who are familiar with the basics of supervised learning and deep learning techniques and professionals who already use TensorFlow/Python for purposes such as data science, ML, research, analysis, etc.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Bansal, Ashish
856 40 - ELECTRONIC LOCATION AND ACCESS
Access method Cyberlibris
Uniform Resource Identifier <a href="https://international.scholarvox.com/netsen/book/88910717">https://international.scholarvox.com/netsen/book/88910717</a>
Electronic format type text/html
Host name

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025