Machine Learning with PyTorch and Scikit-Learn (notice n° 74735)
[ vue normale ]
000 -LEADER | |
---|---|
fixed length control field | 03782cam a2200301zu 4500 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | FRCYB88924189 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20250107235133.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 250108s2022 fr | o|||||0|0|||eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781801819312 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | FRCYB88924189 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | FR-PaCSA |
Language of cataloging | en |
Transcribing agency | |
Description conventions | rda |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Raschka, Sebastian |
245 01 - TITLE STATEMENT | |
Title | Machine Learning with PyTorch and Scikit-Learn |
Statement of responsibility, etc. | ['Raschka, Sebastian', 'Liu, Yuxi (Hayden)', 'Mirjalili, Vahid'] |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Name of producer, publisher, distributor, manufacturer | Packt Publishing |
Date of production, publication, distribution, manufacture, or copyright notice | 2022 |
300 ## - PHYSICAL DESCRIPTION | |
Extent | p. |
336 ## - CONTENT TYPE | |
Content type code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type code | c |
Source | rdamdedia |
338 ## - CARRIER TYPE | |
Carrier type code | c |
Source | rdacarrier |
520 ## - SUMMARY, ETC. | |
Summary, etc. | This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch's simple to code frameworkKey FeaturesLearn applied machine learning with a solid foundation in theoryClear, intuitive explanations take you deep into the theory and practice of Python machine learningFully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practicesBook DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems.Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself.Why PyTorch?PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric.You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP).This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learnExplore frameworks, models, and techniques for machines to 'learn' from dataUse scikit-learn for machine learning and PyTorch for deep learningTrain machine learning classifiers on images, text, and moreBuild and train neural networks, transformers, and boosting algorithmsDiscover best practices for evaluating and tuning modelsPredict continuous target outcomes using regression analysisDig deeper into textual and social media data using sentiment analysisWho this book is forIf you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource.Written for developers and data scientists who want to create practical machine learning with Python and PyTorch deep learning code. This Python book is ideal for anyone who wants to teach computers how to learn from data.Working knowledge of the Python programming language, along with a good understanding of calculus and linear algebra is a must. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | |
700 0# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Raschka, Sebastian |
700 0# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Liu, Yuxi (Hayden) |
700 0# - ADDED ENTRY--PERSONAL NAME | |
Personal name | Mirjalili, Vahid |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Access method | Cyberlibris |
Uniform Resource Identifier | <a href="https://international.scholarvox.com/netsen/book/88924189">https://international.scholarvox.com/netsen/book/88924189</a> |
Electronic format type | text/html |
Host name |
Pas d'exemplaire disponible.
Réseaux sociaux