Practical Data Science with Python (notice n° 74752)
[ vue normale ]
000 -LEADER | |
---|---|
fixed length control field | 03621cam a2200277zu 4500 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | FRCYB88924471 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20250107235143.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 250108s2021 fr | o|||||0|0|||eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781801071970 |
035 ## - SYSTEM CONTROL NUMBER | |
System control number | FRCYB88924471 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | FR-PaCSA |
Language of cataloging | en |
Transcribing agency | |
Description conventions | rda |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | George, Nathan |
245 01 - TITLE STATEMENT | |
Title | Practical Data Science with Python |
Statement of responsibility, etc. | ['George, Nathan'] |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Name of producer, publisher, distributor, manufacturer | Packt Publishing |
Date of production, publication, distribution, manufacture, or copyright notice | 2021 |
300 ## - PHYSICAL DESCRIPTION | |
Extent | p. |
336 ## - CONTENT TYPE | |
Content type code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media type code | c |
Source | rdamdedia |
338 ## - CARRIER TYPE | |
Carrier type code | c |
Source | rdacarrier |
520 ## - SUMMARY, ETC. | |
Summary, etc. | Learn to effectively manage data and execute data science projects from start to finish using PythonKey FeaturesUnderstand and utilize data science tools in Python, such as specialized machine learning algorithms and statistical modelingBuild a strong data science foundation with the best data science tools available in PythonAdd value to yourself, your organization, and society by extracting actionable insights from raw dataBook DescriptionPractical Data Science with Python teaches you core data science concepts, with real-world and realistic examples, and strengthens your grip on the basic as well as advanced principles of data preparation and storage, statistics, probability theory, machine learning, and Python programming, helping you build a solid foundation to gain proficiency in data science.The book starts with an overview of basic Python skills and then introduces foundational data science techniques, followed by a thorough explanation of the Python code needed to execute the techniques. You'll understand the code by working through the examples. The code has been broken down into small chunks (a few lines or a function at a time) to enable thorough discussion.As you progress, you will learn how to perform data analysis while exploring the functionalities of key data science Python packages, including pandas, SciPy, and scikit-learn. Finally, the book covers ethics and privacy concerns in data science and suggests resources for improving data science skills, as well as ways to stay up to date on new data science developments.By the end of the book, you should be able to comfortably use Python for basic data science projects and should have the skills to execute the data science process on any data source.What you will learnUse Python data science packages effectivelyClean and prepare data for data science work, including feature engineering and feature selectionData modeling, including classic statistical models (such as t-tests), and essential machine learning algorithms, such as random forests and boosted modelsEvaluate model performanceCompare and understand different machine learning methodsInteract with Excel spreadsheets through PythonCreate automated data science reports through PythonGet to grips with text analytics techniquesWho this book is forThe book is intended for beginners, including students starting or about to start a data science, analytics, or related program (e.g. Bachelor's, Master's, bootcamp, online courses), recent college graduates who want to learn new skills to set them apart in the job market, professionals who want to learn hands-on data science techniques in Python, and those who want to shift their career to data science.The book requires basic familiarity with Python. A "getting started with Python" section has been included to get complete novices up to speed. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name entry element | |
700 0# - ADDED ENTRY--PERSONAL NAME | |
Personal name | George, Nathan |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Access method | Cyberlibris |
Uniform Resource Identifier | <a href="https://international.scholarvox.com/netsen/book/88924471">https://international.scholarvox.com/netsen/book/88924471</a> |
Electronic format type | text/html |
Host name |
Pas d'exemplaire disponible.
Réseaux sociaux