Angular and Deep Learning Pocket Primer (notice n° 78026)

détails MARC
000 -LEADER
fixed length control field 01899cam a2200277zu 4500
003 - CONTROL NUMBER IDENTIFIER
control field FRCYB88949071
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250108002759.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250108s2020 fr | o|||||0|0|||eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781683924715
035 ## - SYSTEM CONTROL NUMBER
System control number FRCYB88949071
040 ## - CATALOGING SOURCE
Original cataloging agency FR-PaCSA
Language of cataloging en
Transcribing agency
Description conventions rda
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Campesato, Oswald
245 01 - TITLE STATEMENT
Title Angular and Deep Learning Pocket Primer
Statement of responsibility, etc. ['Campesato, Oswald']
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Name of producer, publisher, distributor, manufacturer Mercury Learning and Information
Date of production, publication, distribution, manufacture, or copyright notice 2020
300 ## - PHYSICAL DESCRIPTION
Extent p.
336 ## - CONTENT TYPE
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type code c
Source rdamdedia
338 ## - CARRIER TYPE
Carrier type code c
Source rdacarrier
520 ## - SUMMARY, ETC.
Summary, etc. As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to basic deep learning concepts and incorporate that knowledge into Angular 10 applications. It is intended to be a fast-paced introduction to some basic features of deep learning and an overview of several popular deep learning classifiers. The book includes code samples and numerous figures and covers topics such as Angular 10 functionality, basic deep learning concepts, classification algorithms, TensorFlow, and Keras. Companion files with code and color figures are included.FEATURES:Introduces basic deep learning concepts and Angular 10 applicationsCovers MLPs (MultiLayer Perceptrons) and CNNs (Convolutional Neural Networks), RNNs (Recurrent Neural Networks), LSTMs (Long Short-Term Memory), GRUs (Gated Recurrent Units), autoencoders, and GANs (Generative Adversarial Networks)Introduces TensorFlow 2 and KerasIncludes companion files with source code and 4-color figures.The companion files are also available online by emailing the publisher with proof of purchase at info@merclearning.com.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Campesato, Oswald
856 40 - ELECTRONIC LOCATION AND ACCESS
Access method Cyberlibris
Uniform Resource Identifier <a href="https://international.scholarvox.com/netsen/book/88949071">https://international.scholarvox.com/netsen/book/88949071</a>
Electronic format type text/html
Host name

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025