Python 3 and Feature Engineering (notice n° 78073)

détails MARC
000 -LEADER
fixed length control field 02364cam a2200277zu 4500
003 - CONTROL NUMBER IDENTIFIER
control field FRCYB88949028
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250108002826.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250108s2023 fr | o|||||0|0|||eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781683929482
035 ## - SYSTEM CONTROL NUMBER
System control number FRCYB88949028
040 ## - CATALOGING SOURCE
Original cataloging agency FR-PaCSA
Language of cataloging en
Transcribing agency
Description conventions rda
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Campesato, Oswald
245 01 - TITLE STATEMENT
Title Python 3 and Feature Engineering
Statement of responsibility, etc. ['Campesato, Oswald']
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Name of producer, publisher, distributor, manufacturer Mercury Learning and Information
Date of production, publication, distribution, manufacture, or copyright notice 2023
300 ## - PHYSICAL DESCRIPTION
Extent p.
336 ## - CONTENT TYPE
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type code c
Source rdamdedia
338 ## - CARRIER TYPE
Carrier type code c
Source rdacarrier
520 ## - SUMMARY, ETC.
Summary, etc. This book is designed for data scientists, machine learning practitioners, and anyone with a foundational understanding of Python 3.x. In the evolving field of data science, the ability to manipulate and understand datasets is crucial. The book offers content for mastering these skills using Python 3. The book provides a fast-paced introduction to a wealth of feature engineering concepts, equipping readers with the knowledge needed to transform raw data into meaningful information. Inside, you’ll find a detailed exploration of various types of data, methodologies for outlier detection using Scikit-Learn, strategies for robust data cleaning, and the intricacies of data wrangling. The book further explores feature selection, detailing methods for handling imbalanced datasets, and gives a practical overview of feature engineering, including scaling and extraction techniques necessary for different machine learning algorithms. It concludes with a treatment of dimensionality reduction, where you’ll navigate through complex concepts like PCA and various reduction techniques, with an emphasis on the powerful Scikit-Learn framework.FEATURESIncludes numerous practical examples and partial code blocks that illuminate the path from theory to applicationExplores everything from data cleaning to the subtleties of feature selection and extraction, covering a wide spectrum of feature engineering topicsOffers an appendix on working with the “awk” command-line utilityFeatures companion files available for downloading with source code, datasets, and figures
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Campesato, Oswald
856 40 - ELECTRONIC LOCATION AND ACCESS
Access method Cyberlibris
Uniform Resource Identifier <a href="https://international.scholarvox.com/netsen/book/88949028">https://international.scholarvox.com/netsen/book/88949028</a>
Electronic format type text/html
Host name

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025