L’« ordre géométrique » et le dispositif argumentatif des Méditations métaphysiques de René Descartes (notice n° 870560)
[ vue normale ]
000 -LEADER | |
---|---|
fixed length control field | 03483cam a2200385 4500500 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20250123155620.0 |
041 ## - LANGUAGE CODE | |
Language code of text/sound track or separate title | fre |
042 ## - AUTHENTICATION CODE | |
Authentication code | dc |
100 10 - MAIN ENTRY--PERSONAL NAME | |
Personal name | Dubouclez, Olivier |
Relator term | author |
245 00 - TITLE STATEMENT | |
Title | L’« ordre géométrique » et le dispositif argumentatif des Méditations métaphysiques de René Descartes |
260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
Date of publication, distribution, etc. | 2016.<br/> |
500 ## - GENERAL NOTE | |
General note | 3 |
520 ## - SUMMARY, ETC. | |
Summary, etc. | Si aucun élément n’atteste à première vue de la présence d’un modèle mathématique au sein des Méditations métaphysiques, la revendication de Descartes d’avoir suivi le « mos geometricus » nous invite à surmonter cette impression pour réexaminer son art de la méditation. En relisant les principales lettres de 1640 (où Descartes caractérise et critique sa démarche métaphysique), en prenant acte de la continuité qui relie ces lettres aux dernières pages des Secondes réponses de 1641, on voit émerger un modèle argumentatif de nature mathématique s’appuyant sur la notion classique de l’analyse des géomètres. Mais, si l’analyse participe activement à la concrétisation de « l’ordre des raisons » dans le contexte du doute hyperbolique, cette analyse s’entend en un sens nouveau, proprement cartésien, où sont combinés deux outils argumentatifs communs à la géométrie et à la métaphysique, la supposition et l’énumération. Cet article cherche à montrer en quel sens le dispositif central de la métaphysique cartésienne peut être dit authentiquement géométrique sans relever pourtant d’une « chaîne de raisons » strictement linéaire. |
520 ## - SUMMARY, ETC. | |
Summary, etc. | « Geometrical order » and argumentative setups in Descartes’ Metaphysical MeditationsAlthough nothing shows at first sight that the Metaphysical meditations are built in accordance with a mathematical model, Descartes’ claim to have followed the « mos geometricus » invites us to pass over that first impression and to reconsider the Cartesian art of meditation. Descartes’ main letters of 1640 (where he describes and also criticizes his metaphysical method) along with the last pages of the Second replies of 1641 reveal indeed a mathematical pattern of argumentation based on the classical notion of geometrical analysis. But, if analysis plays an active role in the realization of the « order of reasons » within the context of hyperbolic doubt, it is deeply transformed by Descartes and amounts to a combination of two argumentative tools, namely supposition and enumeration, which are common to geometry and metaphysics. This article suggests in which sense the very method of Cartesian metaphysics, while not following a strictly linear « chain of reasons », can be genuinely said geometrical. |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | doute |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | supposition |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | métaphysique |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | analyse et synthèse |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | géométrie |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | théorie de l’argumentation |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | analyse géométrique |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | méthode |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | science classique |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | doubt |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | classical science |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | theory of argumentation |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | supposition |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | analysis and synthesis |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | method |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | metaphysics |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | geometry |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | geometrical analysis |
786 0# - DATA SOURCE ENTRY | |
Note | Revue d'histoire des sciences | 69 | 2 | 2016-12-19 | p. 311-334 | 0151-4105 |
856 41 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://shs.cairn.info/revue-d-histoire-des-sciences-2016-2-page-311?lang=fr&redirect-ssocas=7080">https://shs.cairn.info/revue-d-histoire-des-sciences-2016-2-page-311?lang=fr&redirect-ssocas=7080</a> |
Pas d'exemplaire disponible.
Réseaux sociaux