Image de Google Jackets
Vue normale Vue MARC vue ISBD

Symétries continues

Par : Type de matériel : TexteTexteLangue : français Détails de publication : EDP Sciences, 2021. Ressources en ligne : Abrégé : Les groupes de symétrie, ou groupes d’invariance, jouent un rôle important dans toute la physique. Les translations d’espace et de temps, les rotations d’espace et enfin les transformations de Galilée ou de Lorentz entre référentiels d’inertie définissent la structure de l’espace-temps. Les symétries correspondantes sont tout particulièrement importantes en mécanique quantique. En effet les opérateurs fondamentaux - énergie, position, impulsion, moment angulaire - ainsi que leurs relations de commutation, loin d’être arbitraires, sont déterminés par la géométrie de l’espace et celle de l’espace-temps.Ces considérations de symétrie permettent de comprendre l’origine de la masse et du spin et d’établir des équations d’onde comme l’équation de Schrödinger ou celle de Dirac à partir du groupe d’invariance choisi: Galilée ou Lorentz. Ces équations permettent de décrire les particules de spin 1/2 et prédisent correctement leur moment magnétique anormal.Cet ouvrage, issu d’un cours de DEA de Physique théorique de l’ENS, a à la fois un caractère fondamental et appliqué. L’utilisation des symétries, et en particulier de celle de rotation, est un outil pratique permettant une approche géométrique de problèmes comme le théorème de Wigner-Eckart ou les opérateurs tensoriels irréductibles. Enfin le livre discute de deux symétries discrètes, la parité et le renversement du temps.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

Les groupes de symétrie, ou groupes d’invariance, jouent un rôle important dans toute la physique. Les translations d’espace et de temps, les rotations d’espace et enfin les transformations de Galilée ou de Lorentz entre référentiels d’inertie définissent la structure de l’espace-temps. Les symétries correspondantes sont tout particulièrement importantes en mécanique quantique. En effet les opérateurs fondamentaux - énergie, position, impulsion, moment angulaire - ainsi que leurs relations de commutation, loin d’être arbitraires, sont déterminés par la géométrie de l’espace et celle de l’espace-temps.Ces considérations de symétrie permettent de comprendre l’origine de la masse et du spin et d’établir des équations d’onde comme l’équation de Schrödinger ou celle de Dirac à partir du groupe d’invariance choisi: Galilée ou Lorentz. Ces équations permettent de décrire les particules de spin 1/2 et prédisent correctement leur moment magnétique anormal.Cet ouvrage, issu d’un cours de DEA de Physique théorique de l’ENS, a à la fois un caractère fondamental et appliqué. L’utilisation des symétries, et en particulier de celle de rotation, est un outil pratique permettant une approche géométrique de problèmes comme le théorème de Wigner-Eckart ou les opérateurs tensoriels irréductibles. Enfin le livre discute de deux symétries discrètes, la parité et le renversement du temps.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025