Image de Google Jackets
Vue normale Vue MARC vue ISBD

Reclassifying Innovation for Biodiversity: A Patent-Based Framework to Monitor Green and Pervasive Technologies

Par : Contributeur(s) : Type de matériel : TexteTexteLangue : français Détails de publication : 2025. Sujet(s) : Ressources en ligne : Abrégé : Existing patent classification systems often overlook the full spectrum of green and environmentally relevant technologies – especially pervasive technologies not originally designed for ecological purposes. This paper presents a novel methodological framework to identify, and classify both clean and pervasive technologies with relevance to biodiversity innovation. The approach combines the analysis of international patent data with machine learning techniques to enhance the accuracy and granularity of classification. In a two-step process, the study first identifies key biodiversity-related technologies and their corresponding IPC classes, and then maps innovation activity and geographic trends using patent-based indicators. By addressing limitations in existing international patent classification schemes, the framework enables more accurate ESG assessments and better-informed sustainability policies and investments. Ultimately, this work provides data-driven tools for tracking biodiversity-related technological progress, supporting robust ESG disclosure and strategic decision-making across sectors.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

50

Existing patent classification systems often overlook the full spectrum of green and environmentally relevant technologies – especially pervasive technologies not originally designed for ecological purposes. This paper presents a novel methodological framework to identify, and classify both clean and pervasive technologies with relevance to biodiversity innovation. The approach combines the analysis of international patent data with machine learning techniques to enhance the accuracy and granularity of classification. In a two-step process, the study first identifies key biodiversity-related technologies and their corresponding IPC classes, and then maps innovation activity and geographic trends using patent-based indicators. By addressing limitations in existing international patent classification schemes, the framework enables more accurate ESG assessments and better-informed sustainability policies and investments. Ultimately, this work provides data-driven tools for tracking biodiversity-related technological progress, supporting robust ESG disclosure and strategic decision-making across sectors.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025