Difficultés logiques et problèmes philosophiques dans les Principia Mathematica de Russell
Type de matériel :
98
L’A. montre que les difficultés d’ordre purement logique qui découlent de la version « ramifiée » de la théorie des types mise en place par Russell dans les Principia Mathematica (et qui ont trait, notamment à l’axiome de l’infini et à l’axiome de réductibilité) ne peuvent en aucun cas être dissociées de leurs conséquences philosophiques. Celles-ci — qui concernent à la fois le statut ontologique des classes, le principe des indiscernables et la notion même de signification — sont examinées à la lumière tant des objections de Quine que de la distinction entre « expression » et « indication » introduite en 1940 par Russell dans Signification et vérité.
Difficulties of logic and philosophical problems in Russell’s Principia MathematicaThe author shows that the difficulties of a purely logical nature which follow from the « ramified » version of the theory of types, set out by Russell in Principia Mathematica, (difficulties relating in particular to the axiom of infinity and the axiom of reductibility) can in no circumstances be dissociated from their philosophical consequences. Involving at one and the same time the ontological statute of classes, the principle of indiscernables and the very notion of meaning, these consequences are examined from the angle of Quine’s objections and bearing in mind the distinction between « expression » and « indication ». Russell himself introduced in 1940 in An Inquiry into Meaning and Truth.
Réseaux sociaux