Image de Google Jackets
Vue normale Vue MARC vue ISBD

Diversify Approaches to Better Understand the Compatibility of Artificial Intelligence and Sustainability: “I Love You… Me Neither”

Par : Contributeur(s) : Type de matériel : TexteTexteLangue : français Détails de publication : 2024. Sujet(s) : Ressources en ligne : Abrégé : The aim of this article is twofold: 1. Suggest an overview of current knowledge and understanding of both concepts and 2. Present the six contributions and their positioning in relation to current the literature linked to artificial intelligence and sustainability. For that, we use different but complementary sources. First, we ask artificial intelligence to reveal the mainstream view. Then we call on human intelligence to provide a critical perspective. Finally, we carry out a bibliometric analysis using the SCOPUS database and two different statistical analyses (the CCA – co-citation analysis, the BCA – bibliographic coupling analysis). The diversity of the sources used, and their complementarity allow us to propose a holistic vision of the subject, highlighting the concerns that surround it and identifying future avenues of research for academics. The articles selected in this special issue fill some of the gaps raised and call for further research.JEL Codes: O33, O44, Q55, Q56
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

97

The aim of this article is twofold: 1. Suggest an overview of current knowledge and understanding of both concepts and 2. Present the six contributions and their positioning in relation to current the literature linked to artificial intelligence and sustainability. For that, we use different but complementary sources. First, we ask artificial intelligence to reveal the mainstream view. Then we call on human intelligence to provide a critical perspective. Finally, we carry out a bibliometric analysis using the SCOPUS database and two different statistical analyses (the CCA – co-citation analysis, the BCA – bibliographic coupling analysis). The diversity of the sources used, and their complementarity allow us to propose a holistic vision of the subject, highlighting the concerns that surround it and identifying future avenues of research for academics. The articles selected in this special issue fill some of the gaps raised and call for further research.JEL Codes: O33, O44, Q55, Q56

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025