Image de Google Jackets
Vue normale Vue MARC vue ISBD

Testing models of decision under risk

Par : Type de matériel : TexteTexteLangue : français Détails de publication : 2018. Sujet(s) : Ressources en ligne : Abrégé : One of the most robust findings in the literature using data on horseraces bets is that odds associated to horses reflect their chances of winning very well, with the exception that favorites are underbet while outsiders are overbet. Expected utility theory and behavioral theories of decision under risk compete to explain this finding. This paper seeks to discriminate between the two classes of models by testing which is the most suited to explaining the behavior of bettors observed in the data. Using a unique dataset of bets on horseraces in France, I find that behavioral theories of decision under risk better fit my data than expected utility. This result shows that behavioral theories provide a better representation of choice behavior than expected utility. Classification JEL : D81, L83.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

69

One of the most robust findings in the literature using data on horseraces bets is that odds associated to horses reflect their chances of winning very well, with the exception that favorites are underbet while outsiders are overbet. Expected utility theory and behavioral theories of decision under risk compete to explain this finding. This paper seeks to discriminate between the two classes of models by testing which is the most suited to explaining the behavior of bettors observed in the data. Using a unique dataset of bets on horseraces in France, I find that behavioral theories of decision under risk better fit my data than expected utility. This result shows that behavioral theories provide a better representation of choice behavior than expected utility. Classification JEL : D81, L83.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025