Image de Google Jackets
Vue normale Vue MARC vue ISBD

A Note on the Interpretability of Machine Learning Algorithms

Par : Type de matériel : TexteTexteLangue : français Détails de publication : 2020. Ressources en ligne : Abrégé : To analyze the concept of interpretability associated with an ML algorithm, a distinction is made between “how” (How does a black box or a very complex algorithm work?) and “why” (Why does an algorithm produce such-and-such a result?). These questions appeal to many actors: users, professionals, regulators, etc. Using a formal, standardized framework, existing solutions are indicated by specifying which elements in the supply chain are impacted when answers are provided to the previous questions. This presentation, by standardizing notations, allows for a comparison of different approaches so as to highlight the specificity of each (their objectives and processes). This study is not exhaustive — the subject is far from closed…
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

9

To analyze the concept of interpretability associated with an ML algorithm, a distinction is made between “how” (How does a black box or a very complex algorithm work?) and “why” (Why does an algorithm produce such-and-such a result?). These questions appeal to many actors: users, professionals, regulators, etc. Using a formal, standardized framework, existing solutions are indicated by specifying which elements in the supply chain are impacted when answers are provided to the previous questions. This presentation, by standardizing notations, allows for a comparison of different approaches so as to highlight the specificity of each (their objectives and processes). This study is not exhaustive — the subject is far from closed…

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025