Image de Google Jackets
Vue normale Vue MARC vue ISBD

Local Fractional Integral Transforms and Their Applications ['Jun Yang, Xiao', 'Baleanu, Dumitru', 'Srivastava, H. M.']

Par : Contributeur(s) : Type de matériel : TexteTexteÉditeur : Elsevier Science 2015Description : pType de contenu :
Type de média :
Type de support :
ISBN :
  • 9780128040027
Sujet(s) :
Ressources en ligne : Abrégé : Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms.Provides applications of local fractional Fourier SeriesDiscusses definitions for local fractional Laplace transformsExplains local fractional Laplace transforms coupled with analytical methods
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms.Provides applications of local fractional Fourier SeriesDiscusses definitions for local fractional Laplace transformsExplains local fractional Laplace transforms coupled with analytical methods

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025