Image de Google Jackets
Vue normale Vue MARC vue ISBD

Scientific Computing with Scala ['Jancauskas, Vytautas']

Par : Contributeur(s) : Type de matériel : TexteTexteÉditeur : Packt Publishing 2016Description : pType de contenu :
Type de média :
Type de support :
ISBN :
  • 9781785886942
Sujet(s) :
Ressources en ligne : Abrégé : Learn to solve scientific computing problems using Scala and its numerical computing, data processing, concurrency, and plotting librariesAbout This BookParallelize your numerical computing code using convenient and safe techniques.Accomplish common high-performance, scientific computing goals in Scala.Learn about data visualization and how to create high-quality scientific plots in ScalaWho This Book Is ForScientists and engineers who would like to use Scala for their scientific and numerical computing needs. A basic familiarity with undergraduate level mathematics and statistics is expected but not strictly required. A basic knowledge of Scala is required as well as the ability to write simple Scala programs. However, complicated programming concepts are not used in the book. Anyone who wants to explore using Scala for writing scientific or engineering software will benefit from the book.What You Will LearnWrite and read a variety of popular file formats used to store scientific dataUse Breeze for linear algebra, optimization, and digital signal processingGain insight into Saddle for data analysisUse ScalaLab for interactive computingQuickly and conveniently write safe parallel applications using Scala's parallel collectionsImplement and deploy concurrent programs using the Akka frameworkUse the Wisp plotting library to produce scientific plotsVisualize multivariate data using various visualization techniquesIn DetailScala is a statically typed, Java Virtual Machine (JVM)-based language with strong support for functional programming. There exist libraries for Scala that cover a range of common scientific computing tasks – from linear algebra and numerical algorithms to convenient and safe parallelization to powerful plotting facilities. Learning to use these to perform common scientific tasks will allow you to write programs that are both fast and easy to write and maintain.We will start by discussing the advantages of using Scala over other scientific computing platforms. You will discover Scala packages that provide the functionality you have come to expect when writing scientific software. We will explore using Scala's Breeze library for linear algebra, optimization, and signal processing. We will then proceed to the Saddle library for data analysis. If you have experience in R or with Python's popular pandas library you will learn how to translate those skills to Saddle. If you are new to data analysis, you will learn basic concepts of Saddle as well. Well will explore the numerical computing environment called ScalaLab. It comes bundled with a lot of scientific software readily available. We will use it for interactive computing, data analysis, and visualization. In the following chapters, we will explore using Scala's powerful parallel collections for safe and convenient parallel programming. Topics such as the Akka concurrency framework will be covered. Finally, you will learn about multivariate data visualization and how to produce professional-looking plots in Scala easily. After reading the book, you should have more than enough information on how to start using Scala as your scientific computing platformStyle and approachExamples are provided on how to use Scala to do basic numerical and scientific computing tasks. All the concepts are illustrated with more involved examples in each chapter. The goal of the book is to allow you to translate existing experience in scientific computing to Scala.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

Learn to solve scientific computing problems using Scala and its numerical computing, data processing, concurrency, and plotting librariesAbout This BookParallelize your numerical computing code using convenient and safe techniques.Accomplish common high-performance, scientific computing goals in Scala.Learn about data visualization and how to create high-quality scientific plots in ScalaWho This Book Is ForScientists and engineers who would like to use Scala for their scientific and numerical computing needs. A basic familiarity with undergraduate level mathematics and statistics is expected but not strictly required. A basic knowledge of Scala is required as well as the ability to write simple Scala programs. However, complicated programming concepts are not used in the book. Anyone who wants to explore using Scala for writing scientific or engineering software will benefit from the book.What You Will LearnWrite and read a variety of popular file formats used to store scientific dataUse Breeze for linear algebra, optimization, and digital signal processingGain insight into Saddle for data analysisUse ScalaLab for interactive computingQuickly and conveniently write safe parallel applications using Scala's parallel collectionsImplement and deploy concurrent programs using the Akka frameworkUse the Wisp plotting library to produce scientific plotsVisualize multivariate data using various visualization techniquesIn DetailScala is a statically typed, Java Virtual Machine (JVM)-based language with strong support for functional programming. There exist libraries for Scala that cover a range of common scientific computing tasks – from linear algebra and numerical algorithms to convenient and safe parallelization to powerful plotting facilities. Learning to use these to perform common scientific tasks will allow you to write programs that are both fast and easy to write and maintain.We will start by discussing the advantages of using Scala over other scientific computing platforms. You will discover Scala packages that provide the functionality you have come to expect when writing scientific software. We will explore using Scala's Breeze library for linear algebra, optimization, and signal processing. We will then proceed to the Saddle library for data analysis. If you have experience in R or with Python's popular pandas library you will learn how to translate those skills to Saddle. If you are new to data analysis, you will learn basic concepts of Saddle as well. Well will explore the numerical computing environment called ScalaLab. It comes bundled with a lot of scientific software readily available. We will use it for interactive computing, data analysis, and visualization. In the following chapters, we will explore using Scala's powerful parallel collections for safe and convenient parallel programming. Topics such as the Akka concurrency framework will be covered. Finally, you will learn about multivariate data visualization and how to produce professional-looking plots in Scala easily. After reading the book, you should have more than enough information on how to start using Scala as your scientific computing platformStyle and approachExamples are provided on how to use Scala to do basic numerical and scientific computing tasks. All the concepts are illustrated with more involved examples in each chapter. The goal of the book is to allow you to translate existing experience in scientific computing to Scala.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025