Image de Google Jackets
Vue normale Vue MARC vue ISBD

Internal Friction and Ultrasonic Attenuation in Solids Proceedings of the Third European Conference University of Manchester, England, 18-20 July 1980 ['Smith, C. C.']

Par : Contributeur(s) : Type de matériel : TexteTexteÉditeur : Elsevier Science 2017Description : pType de contenu :
Type de média :
Type de support :
ISBN :
  • 9780080247717
Sujet(s) :
Ressources en ligne : Abrégé : Internal Friction and Ultrasonic Attenuation in Solids contains the proceedings of the Third European Conference on Internal Friction and Ultrasonic Attenuation in Solids, held at the University of Manchester in England on July 18-20, 1980. The papers explore the principles of internal friction and ultrasonic attenuation in solids such as pure metals and their alloys, ceramics, glasses, and polymers. Structural features such as point defects, dislocations, interfaces, and second phases in solids are discussed, together with the processes by which these features contribute to energy dissipation. Topics covered range from point defect interactions to the establishment of high damping capacity materials for absorption of noise and vibration. This book is comprised of 65 chapters and begins with a brief review of the internal friction peaks observed in face-centered cubic, body-centered cubic, and hexagonal metals due to dislocation relaxation processes. Subsequent chapters focus on the internal friction of cold-worked single crystals of high-purity copper; evidence of Peierls Nabarro stress from microdeformation and attenuation experiments; effects of cyclic deformation and irradiation at low temperature on the internal friction of pure aluminum; and internal friction of high-purity magnesium after plastic deformation. The peaking effect in copper and silver is also analyzed, along with Zener relaxation and dislocation damping. The final chapter is devoted to anelastic behavior of ice at low temperature due to quenched point defects. This monograph will be a valuable resource for metallurgists, physicists, and mechanical engineers.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

Internal Friction and Ultrasonic Attenuation in Solids contains the proceedings of the Third European Conference on Internal Friction and Ultrasonic Attenuation in Solids, held at the University of Manchester in England on July 18-20, 1980. The papers explore the principles of internal friction and ultrasonic attenuation in solids such as pure metals and their alloys, ceramics, glasses, and polymers. Structural features such as point defects, dislocations, interfaces, and second phases in solids are discussed, together with the processes by which these features contribute to energy dissipation. Topics covered range from point defect interactions to the establishment of high damping capacity materials for absorption of noise and vibration. This book is comprised of 65 chapters and begins with a brief review of the internal friction peaks observed in face-centered cubic, body-centered cubic, and hexagonal metals due to dislocation relaxation processes. Subsequent chapters focus on the internal friction of cold-worked single crystals of high-purity copper; evidence of Peierls Nabarro stress from microdeformation and attenuation experiments; effects of cyclic deformation and irradiation at low temperature on the internal friction of pure aluminum; and internal friction of high-purity magnesium after plastic deformation. The peaking effect in copper and silver is also analyzed, along with Zener relaxation and dislocation damping. The final chapter is devoted to anelastic behavior of ice at low temperature due to quenched point defects. This monograph will be a valuable resource for metallurgists, physicists, and mechanical engineers.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025