Image de Google Jackets
Vue normale Vue MARC vue ISBD

Managing Datasets and Models ['Campesato, Oswald']

Par : Contributeur(s) : Type de matériel : TexteTexteÉditeur : Mercury Learning and Information 2023Description : pType de contenu :
Type de média :
Type de support :
ISBN :
  • 9781683929512
Sujet(s) :
Ressources en ligne : Abrégé : This book contains a fast-paced introduction to data-related tasks in preparation for training models ondatasets. It presents a step-by-step, Python-based code sample that uses the kNN algorithm to manage a model on a dataset. Chapter One begins with an introduction to datasets and issues that can arise, followed by Chapter Two on outliers and anomaly detection. The next chapter explores ways for handling missing data and invalid data, and Chapter Four demonstrates how to train models with classification algorithms. Chapter 5 introduces visualization toolkits, such as Sweetviz, Skimpy, Matplotlib, and Seaborn, along with some simple Python-based code samples that render charts and graphs. An appendix includes some basics on using awk. Companion files with code, datasets, and figures are available for downloading.FEATURES:Covers extensive topics related to cleaning datasets and working with modelsIncludes Python-based code samples and  a separate chapter on Matplotlib and SeabornFeatures companion files with source code, datasets, and figures from the book
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

This book contains a fast-paced introduction to data-related tasks in preparation for training models ondatasets. It presents a step-by-step, Python-based code sample that uses the kNN algorithm to manage a model on a dataset. Chapter One begins with an introduction to datasets and issues that can arise, followed by Chapter Two on outliers and anomaly detection. The next chapter explores ways for handling missing data and invalid data, and Chapter Four demonstrates how to train models with classification algorithms. Chapter 5 introduces visualization toolkits, such as Sweetviz, Skimpy, Matplotlib, and Seaborn, along with some simple Python-based code samples that render charts and graphs. An appendix includes some basics on using awk. Companion files with code, datasets, and figures are available for downloading.FEATURES:Covers extensive topics related to cleaning datasets and working with modelsIncludes Python-based code samples and  a separate chapter on Matplotlib and SeabornFeatures companion files with source code, datasets, and figures from the book

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025