Image de Google Jackets
Vue normale Vue MARC vue ISBD

Data Science for IoT Engineers A Systems Analytics Approach ['Madhavan, P. G.']

Par : Contributeur(s) : Type de matériel : TexteTexteÉditeur : Mercury Learning and Information 2021Description : pType de contenu :
Type de média :
Type de support :
ISBN :
  • 9781683926412
Sujet(s) :
Ressources en ligne : Abrégé : This book introduces the concepts of data science to professionals in engineering, physics, mathematics, and allied fields. It is a workbook with MATLAB code that creates a common framework and points out various interconnections related to industry. This will allow the reader to connect previous subject knowledge to data science, machine learning, or analytics and apply it to IoT applications. Part One brings together subjects in machine learning, systems theory, linear algebra, digital signal processing, and probability theory. Part Two (Systems Analytics) develops a “universal” nonlinear, time-varying dynamical machine learning solution that can faithfully model all the essential complexities of real-life business problems and shows how to apply it.FEATURES:Develops a “universal,” nonlinear, dynamical machine learning solution to model and apply the complexities of modern applications in IoTCovers topics such as machine learning, systems theory, linear algebra, digital signal processing, probability theory, state-space formulation, Bayesian estimation, Kalman filter, causality, and digital twins.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

This book introduces the concepts of data science to professionals in engineering, physics, mathematics, and allied fields. It is a workbook with MATLAB code that creates a common framework and points out various interconnections related to industry. This will allow the reader to connect previous subject knowledge to data science, machine learning, or analytics and apply it to IoT applications. Part One brings together subjects in machine learning, systems theory, linear algebra, digital signal processing, and probability theory. Part Two (Systems Analytics) develops a “universal” nonlinear, time-varying dynamical machine learning solution that can faithfully model all the essential complexities of real-life business problems and shows how to apply it.FEATURES:Develops a “universal,” nonlinear, dynamical machine learning solution to model and apply the complexities of modern applications in IoTCovers topics such as machine learning, systems theory, linear algebra, digital signal processing, probability theory, state-space formulation, Bayesian estimation, Kalman filter, causality, and digital twins.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025