Image de Google Jackets
Vue normale Vue MARC vue ISBD

Existence of Staphylococcus aureus correlates with the progression of extramammary Paget's disease: potential involvement of interleukin-17 and M2-like macrophage polarization

Par : Contributeur(s) : Type de matériel : TexteTexteLangue : français Détails de publication : 2021. Sujet(s) : Ressources en ligne : Abrégé : Background: The microbiome plays an important role in the tumour microenvironment (TME). Objectives: In this study, we investigated the clinical significance of the microbiota in extramammary Paget's disease (EMPD). Materials & Methods: Patients with EMPD, treated between March 2007 and September 2019 at Kumamoto University Hospital, were investigated retrospectively. Inclusion criteria included: histological diagnosis of EMPD, inspection of the bacterial culture of the cancer lesion using swab sampling, and availability of sufficient tissue in paraffin blocks for immunohistochemistry. For the latter, primary antibodies against IL-17, CD163 and ionized calcium-binding adapter molecule 1 (Iba1) were used. Results: Bacterial cultures of the cancer lesion revealed that Staphylococcus aureus (S. aureus) was highly prevalent in EMPD patients, with dermal invasion or lymph node metastasis, compared to patients without these findings. Furthermore, the number of IL-17-positive cells and CD163-positive M2-like macrophages (pro-tumour macrophages) were increased in EMPD tissues with S. aureus. Moreover, the number of IL-17-producing cells in EMPD tissues positively correlated with the accumulation of CD163-positive M2-like macrophages. In addition, the percentage of CD163-positive cells within Iba-1-positive macrophages (total macrophages) was also significantly elevated in EMPD tissues with S. aureus. Conclusion: Based on these findings, S. aureus may exacerbate the pathological condition of EMPD via the accumulation of IL-17 and M2-like macrophages.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

45

Background: The microbiome plays an important role in the tumour microenvironment (TME). Objectives: In this study, we investigated the clinical significance of the microbiota in extramammary Paget's disease (EMPD). Materials & Methods: Patients with EMPD, treated between March 2007 and September 2019 at Kumamoto University Hospital, were investigated retrospectively. Inclusion criteria included: histological diagnosis of EMPD, inspection of the bacterial culture of the cancer lesion using swab sampling, and availability of sufficient tissue in paraffin blocks for immunohistochemistry. For the latter, primary antibodies against IL-17, CD163 and ionized calcium-binding adapter molecule 1 (Iba1) were used. Results: Bacterial cultures of the cancer lesion revealed that Staphylococcus aureus (S. aureus) was highly prevalent in EMPD patients, with dermal invasion or lymph node metastasis, compared to patients without these findings. Furthermore, the number of IL-17-positive cells and CD163-positive M2-like macrophages (pro-tumour macrophages) were increased in EMPD tissues with S. aureus. Moreover, the number of IL-17-producing cells in EMPD tissues positively correlated with the accumulation of CD163-positive M2-like macrophages. In addition, the percentage of CD163-positive cells within Iba-1-positive macrophages (total macrophages) was also significantly elevated in EMPD tissues with S. aureus. Conclusion: Based on these findings, S. aureus may exacerbate the pathological condition of EMPD via the accumulation of IL-17 and M2-like macrophages.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025