Image de Google Jackets
Vue normale Vue MARC vue ISBD

Seizure symptoms and ambulatory EEG findings: incidence of epileptiform discharges

Par : Contributeur(s) : Type de matériel : TexteTexteLangue : français Détails de publication : 2020. Sujet(s) : Ressources en ligne : Abrégé : Aims. Ambulatory video-EEG monitoring has been utilized as a cost-effective alternative to inpatient video-EEG monitoring for non-surgical diagnostic evaluation of symptoms suggestive of epileptic seizures. We aimed to assess incidence of epileptiform discharges in ambulatory video-EEG recordings according to seizure symptom history obtained during clinical evaluation.Methods. This was a retrospective cohort study. We queried seizure symptoms from 9,221 consecutive ambulatory video-EEG studies in 35 states over one calendar year. We assessed incidence of epileptiform discharges for each symptom, including symptoms that conformed to a category heading, even if not included in the ILAE 2017 symptom list. We report incidences, odds ratios, and corresponding p values using Fisher's exact test and univariate logistic regression. We applied multivariable logistic regression to generate odds ratios for the six symptom categories that are controlled for the presence of other symptoms.Results. History that included motor symptoms (OR=1.53) or automatisms (OR=1.42) was associated with increased occurrence of epileptiform discharges, whereas history of sensory symptoms (OR=0.76) predicted lack of epileptiform discharges. Patient-reported symptoms that were associated with increased occurrence of epileptiform discharges included lip-smacking, moaning, verbal automatism, aggression, eye-blinking, déjà vu, muscle pain, urinary incontinence, choking and jerking. On the other hand, auditory hallucination memory deficits, lightheadedness, syncope, giddiness, fibromyalgia and chronic pain predicted absence of epileptiform discharges. The majority of epileptiform discharges consisted only of interictal sharp waves or spikes.Conclusions. Our study shows that the use of ILAE 2017 symptom categories may help guide ambulatory video-EEG studies.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

73

Aims. Ambulatory video-EEG monitoring has been utilized as a cost-effective alternative to inpatient video-EEG monitoring for non-surgical diagnostic evaluation of symptoms suggestive of epileptic seizures. We aimed to assess incidence of epileptiform discharges in ambulatory video-EEG recordings according to seizure symptom history obtained during clinical evaluation.Methods. This was a retrospective cohort study. We queried seizure symptoms from 9,221 consecutive ambulatory video-EEG studies in 35 states over one calendar year. We assessed incidence of epileptiform discharges for each symptom, including symptoms that conformed to a category heading, even if not included in the ILAE 2017 symptom list. We report incidences, odds ratios, and corresponding p values using Fisher's exact test and univariate logistic regression. We applied multivariable logistic regression to generate odds ratios for the six symptom categories that are controlled for the presence of other symptoms.Results. History that included motor symptoms (OR=1.53) or automatisms (OR=1.42) was associated with increased occurrence of epileptiform discharges, whereas history of sensory symptoms (OR=0.76) predicted lack of epileptiform discharges. Patient-reported symptoms that were associated with increased occurrence of epileptiform discharges included lip-smacking, moaning, verbal automatism, aggression, eye-blinking, déjà vu, muscle pain, urinary incontinence, choking and jerking. On the other hand, auditory hallucination memory deficits, lightheadedness, syncope, giddiness, fibromyalgia and chronic pain predicted absence of epileptiform discharges. The majority of epileptiform discharges consisted only of interictal sharp waves or spikes.Conclusions. Our study shows that the use of ILAE 2017 symptom categories may help guide ambulatory video-EEG studies.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025