Image de Google Jackets
Vue normale Vue MARC vue ISBD

Artificial Intelligence for Healthcare Applications and Management ['Galitsky, Boris', 'Goldberg, Saveli']

Par : Contributeur(s) : Type de matériel : TexteTexteÉditeur : Elsevier Science 2022Description : pType de contenu :
Type de média :
Type de support :
ISBN :
  • 9780128245217
Sujet(s) :
Ressources en ligne : Abrégé : Artificial Intelligence for Healthcare Applications and Management introduces application domains of various AI algorithms across healthcare management. Instead of discussing AI first and then exploring its applications in healthcare afterward, the authors attack the problems in context directly, in order to accelerate the path of an interested reader toward building industrial-strength healthcare applications. Readers will be introduced to a wide spectrum of AI applications supporting all stages of patient flow in a healthcare facility. The authors explain how AI supports patients throughout a healthcare facility, including diagnosis and treatment recommendations needed to get patients from the point of admission to the point of discharge while maintaining quality, patient safety, and patient/provider satisfaction. AI methods are expected to decrease the burden on physicians, improve the quality of patient care, and decrease overall treatment costs. Current conditions affected by COVID-19 pose new challenges for healthcare management and learning how to apply AI will be important for a broad spectrum of students and mature professionals working in medical informatics. This book focuses on predictive analytics, health text processing, data aggregation, management of patients, and other fields which have all turned out to be bottlenecks for the efficient management of coronavirus patients. Presents an in-depth exploration of how AI algorithms embedded in scheduling, prediction, automated support, personalization, and diagnostics can improve the efficiency of patient treatment Investigates explainable AI, including explainable decision support and machine learning, from limited data to back-up clinical decisions, and data analysis Offers hands-on skills to computer science and medical informatics students to aid them in designing intelligent systems for healthcare Informs a broad, multidisciplinary audience about a multitude of applications of machine learning and linguistics across various healthcare fields Introduces medical discourse analysis for a high-level representation of health texts
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

Artificial Intelligence for Healthcare Applications and Management introduces application domains of various AI algorithms across healthcare management. Instead of discussing AI first and then exploring its applications in healthcare afterward, the authors attack the problems in context directly, in order to accelerate the path of an interested reader toward building industrial-strength healthcare applications. Readers will be introduced to a wide spectrum of AI applications supporting all stages of patient flow in a healthcare facility. The authors explain how AI supports patients throughout a healthcare facility, including diagnosis and treatment recommendations needed to get patients from the point of admission to the point of discharge while maintaining quality, patient safety, and patient/provider satisfaction. AI methods are expected to decrease the burden on physicians, improve the quality of patient care, and decrease overall treatment costs. Current conditions affected by COVID-19 pose new challenges for healthcare management and learning how to apply AI will be important for a broad spectrum of students and mature professionals working in medical informatics. This book focuses on predictive analytics, health text processing, data aggregation, management of patients, and other fields which have all turned out to be bottlenecks for the efficient management of coronavirus patients. Presents an in-depth exploration of how AI algorithms embedded in scheduling, prediction, automated support, personalization, and diagnostics can improve the efficiency of patient treatment Investigates explainable AI, including explainable decision support and machine learning, from limited data to back-up clinical decisions, and data analysis Offers hands-on skills to computer science and medical informatics students to aid them in designing intelligent systems for healthcare Informs a broad, multidisciplinary audience about a multitude of applications of machine learning and linguistics across various healthcare fields Introduces medical discourse analysis for a high-level representation of health texts

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025