Image de Google Jackets
Vue normale Vue MARC vue ISBD

Détection d'opinion

Par : Contributeur(s) : Type de matériel : TexteTexteLangue : français Détails de publication : 2009. Sujet(s) : Ressources en ligne : Abrégé : RésuméL’extraction automatique d’opinions sur le web 2.0 est un domaine de recherche de plus en plus étudié. Elle utilise souvent deux méthodes à vocations différentes : soit des méthodes fondées sur l’apprentissage par la constitution de corpus en vue d’établir des modèles pour la classification, soit rechercher des mots caractéristiques tels que les adjectifs qui contribueront à la classification des textes. Dans ce dernier cas, les outils existants utilisent des dictionnaires généraux, et possèdent des limites : pour certains domaines, des adjectifs peuvent être inexistants voire contradictoires. Dans cet article, nous proposons une nouvelle approche de création automatique de dictionnaire d’adjectifs intégrant la connaissance du domaine. Les expériences menées sur des données réelles ont montré l’intérêt de notre approche comparativement à une méthode plus classique par apprentissage.Abrégé : Expressed opinions grows more and more on the Internet. Recently, extracting automatically such opinions becomes a topic addressed by new research work. Traditionally, detection of opinions is based on extracting adjectives. Existing methods are often based on general dictionaries. Unfortunately, main drawbacks of these approaches are that, for different domains, adjectives could not exist and could have an opposite meaning. In this paper we propose a new approach to the automatic creation of dictionary of adjectives that integrates the domain knowledge. The experiments conducted on real data show the usefulness of our approach, compared to a more classic method based on machine learning mechanisms.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

51

RésuméL’extraction automatique d’opinions sur le web 2.0 est un domaine de recherche de plus en plus étudié. Elle utilise souvent deux méthodes à vocations différentes : soit des méthodes fondées sur l’apprentissage par la constitution de corpus en vue d’établir des modèles pour la classification, soit rechercher des mots caractéristiques tels que les adjectifs qui contribueront à la classification des textes. Dans ce dernier cas, les outils existants utilisent des dictionnaires généraux, et possèdent des limites : pour certains domaines, des adjectifs peuvent être inexistants voire contradictoires. Dans cet article, nous proposons une nouvelle approche de création automatique de dictionnaire d’adjectifs intégrant la connaissance du domaine. Les expériences menées sur des données réelles ont montré l’intérêt de notre approche comparativement à une méthode plus classique par apprentissage.

Expressed opinions grows more and more on the Internet. Recently, extracting automatically such opinions becomes a topic addressed by new research work. Traditionally, detection of opinions is based on extracting adjectives. Existing methods are often based on general dictionaries. Unfortunately, main drawbacks of these approaches are that, for different domains, adjectives could not exist and could have an opposite meaning. In this paper we propose a new approach to the automatic creation of dictionary of adjectives that integrates the domain knowledge. The experiments conducted on real data show the usefulness of our approach, compared to a more classic method based on machine learning mechanisms.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025