000 02398cam a2200301zu 4500
001 88807826
003 FRCYB88807826
005 20250107210309.0
006 m o d
007 cr un
008 250107s2007 fr | o|||||0|0|||eng d
020 _a9780691132983
035 _aFRCYB88807826
040 _aFR-PaCSA
_ben
_c
_erda
100 1 _aAbsil, P.-A.
245 0 1 _aOptimization Algorithms on Matrix Manifolds
_c['Absil, P.-A.', 'Mahony, R.', 'Sepulchre, R.']
264 1 _bPrinceton University Press
_c2007
300 _a p.
336 _btxt
_2rdacontent
337 _bc
_2rdamdedia
338 _bc
_2rdacarrier
650 0 _a
700 0 _aAbsil, P.-A.
700 0 _aMahony, R.
700 0 _aSepulchre, R.
856 4 0 _2Cyberlibris
_uhttps://international.scholarvox.com/netsen/book/88807826
_qtext/html
_a
520 _aMany problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.
999 _c60536
_d60536