000 | 01712cam a2200289zu 4500 | ||
---|---|---|---|
001 | 88836573 | ||
003 | FRCYB88836573 | ||
005 | 20250107214828.0 | ||
006 | m o d | ||
007 | cr un | ||
008 | 250107s2016 fr | o|||||0|0|||eng d | ||
020 | _a9781785481437 | ||
035 | _aFRCYB88836573 | ||
040 |
_aFR-PaCSA _ben _c _erda |
||
100 | 1 | _aHenry, Jacques | |
245 | 0 | 1 |
_aFactorization of Boundary Value Problems Using the Invariant Embedding Method _c['Henry, Jacques', 'Ramos, A. M.'] |
264 | 1 |
_bElsevier Science _c2016 |
|
300 | _a p. | ||
336 |
_btxt _2rdacontent |
||
337 |
_bc _2rdamdedia |
||
338 |
_bc _2rdacarrier |
||
650 | 0 | _a | |
700 | 0 | _aHenry, Jacques | |
700 | 0 | _aRamos, A. M. | |
856 | 4 | 0 |
_2Cyberlibris _uhttps://international.scholarvox.com/netsen/book/88836573 _qtext/html _a |
520 | _aFactorization Method for Boundary Value Problems by Invariant Embedding presents a new theory for linear elliptic boundary value problems. The authors provide a transformation of the problem in two initial value problems that are uncoupled, enabling you to solve these successively. This method appears similar to the Gauss block factorization of the matrix, obtained in finite dimension after discretization of the problem. This proposed method is comparable to the computation of optimal feedbacks for linear quadratic control problems.Develops the invariant embedding technique for boundary value problemsMakes a link between control theory, boundary value problems and the Gauss factorizationPresents a new theory for successively solving linear elliptic boundary value problemsIncludes a transformation in two initial value problems that are uncoupled | ||
999 |
_c64554 _d64554 |