000 03508cam a2200277zu 4500
001 88864260
003 FRCYB88864260
005 20250107231058.0
006 m o d
007 cr un
008 250108s2018 fr | o|||||0|0|||eng d
020 _a9780128123720
035 _aFRCYB88864260
040 _aFR-PaCSA
_ben
_c
_erda
100 1 _aVannitsem, Stéphane
245 0 1 _aStatistical Postprocessing of Ensemble Forecasts
_c['Vannitsem, Stéphane']
264 1 _bElsevier Science
_c2018
300 _a p.
336 _btxt
_2rdacontent
337 _bc
_2rdamdedia
338 _bc
_2rdacarrier
650 0 _a
700 0 _aVannitsem, Stéphane
856 4 0 _2Cyberlibris
_uhttps://international.scholarvox.com/netsen/book/88864260
_qtext/html
_a
520 _aStatistical Postprocessing of Ensemble Forecasts brings together chapters contributed by international subject-matter experts describing the current state of the art in the statistical postprocessing of ensemble forecasts. The book illustrates the use of these methods in several important applications including weather, hydrological and climate forecasts, and renewable energy forecasting. After an introductory section on ensemble forecasts and prediction systems, the second section of the book is devoted to exposition of the methods available for statistical postprocessing of ensemble forecasts: univariate and multivariate ensemble postprocessing are first reviewed by Wilks (Chapters 3), then Schefzik and Möller (Chapter 4), and the more specialized perspective necessary for postprocessing forecasts for extremes is presented by Friederichs, Wahl, and Buschow (Chapter 5). The second section concludes with a discussion of forecast verification methods devised specifically for evaluation of ensemble forecasts (Chapter 6 by Thorarinsdottir and Schuhen). The third section of this book is devoted to applications of ensemble postprocessing. Practical aspects of ensemble postprocessing are first detailed in Chapter 7 (Hamill), including an extended and illustrative case study. Chapters 8 (Hemri), 9 (Pinson and Messner), and 10 (Van Schaeybroeck and Vannitsem) discuss ensemble postprocessing specifically for hydrological applications, postprocessing in support of renewable energy applications, and postprocessing of long-range forecasts from months to decades. Finally, Chapter 11 (Messner) provides a guide to the ensemble-postprocessing software available in the R programming language, which should greatly help readers implement many of the ideas presented in this book. Edited by three experts with strong and complementary expertise in statistical postprocessing of ensemble forecasts, this book assesses the new and rapidly developing field of ensemble forecast postprocessing as an extension of the use of statistical corrections to traditional deterministic forecasts. Statistical Postprocessing of Ensemble Forecasts is an essential resource for researchers, operational practitioners, and students in weather, seasonal, and climate forecasting, as well as users of such forecasts in fields involving renewable energy, conventional energy, hydrology, environmental engineering, and agriculture. Consolidates, for the first time, the methodologies and applications of ensemble forecasts in one succinct placeProvides real-world examples of methods used to formulate forecastsPresents the tools needed to make the best use of multiple model forecasts in a timely and efficient manner
999 _c71136
_d71136