000 03193cam a2200277zu 4500
001 88865388
003 FRCYB88865388
005 20250107231407.0
006 m o d
007 cr un
008 250108s2018 fr | o|||||0|0|||eng d
020 _a9781788994590
035 _aFRCYB88865388
040 _aFR-PaCSA
_ben
_c
_erda
100 1 _aNg, Karthikeyan
245 0 1 _aMachine Learning Projects for Mobile Applications
_c['Ng, Karthikeyan']
264 1 _bPackt Publishing
_c2018
300 _a p.
336 _btxt
_2rdacontent
337 _bc
_2rdamdedia
338 _bc
_2rdacarrier
650 0 _a
700 0 _aNg, Karthikeyan
856 4 0 _2Cyberlibris
_uhttps://international.scholarvox.com/netsen/book/88865388
_qtext/html
_a
520 _aBring magic to your mobile apps using TensorFlow Lite and Core ML Key Features Explore machine learning using classification, analytics, and detection tasks. Work with image, text and video datasets to delve into real-world tasks Build apps for Android and iOS using Caffe, Core ML and Tensorflow Lite Book Description Machine learning is a technique that focuses on developing computer programs that can be modified when exposed to new data. We can make use of it for our mobile applications and this book will show you how to do so. The book starts with the basics of machine learning concepts for mobile applications and how to get well equipped for further tasks. You will start by developing an app to classify age and gender using Core ML and Tensorflow Lite. You will explore neural style transfer and get familiar with how deep CNNs work. We will also take a closer look at Google's ML Kit for the Firebase SDK for mobile applications. You will learn how to detect handwritten text on mobile. You will also learn how to create your own Snapchat filter by making use of facial attributes and OpenCV. You will learn how to train your own food classification model on your mobile; all of this will be done with the help of deep learning techniques. Lastly, you will build an image classifier on your mobile, compare its performance, and analyze the results on both mobile and cloud using TensorFlow Lite with an RCNN. By the end of this book, you will not only have mastered the concepts of machine learning but also learned how to resolve problems faced while building powerful apps on mobiles using TensorFlow Lite, Caffe2, and Core ML. What you will learn Demystify the machine learning landscape on mobile Age and gender detection using TensorFlow Lite and Core ML Use ML Kit for Firebase for in-text detection, face detection, and barcode scanning Create a digit classifier using adversarial learning Build a cross-platform application with face filters using OpenCV Classify food using deep CNNs and TensorFlow Lite on iOS Who this book is for Machine Learning Projects for Mobile Applications is for you if you are a data scientist, machine learning expert, deep learning, or AI enthusiast who fancies mastering machine learning and deep learning implementation with practical examples using TensorFlow Lite and CoreML. Basic knowledge of Python programming language would be an added advantage.
999 _c71428
_d71428