Image de Google Jackets
Vue normale Vue MARC vue ISBD

Nonlinearities and interactions between variables: Insights from interpretable machine learning methods for banking regulation

Par : Contributeur(s) : Type de matériel : TexteTexteLangue : français Détails de publication : 2025. Ressources en ligne : Abrégé : The aim of this article is to illustrate the usefulness of interpretable machine learning methods in the specific case of banking economics. In particular, we rely on a gradient boosting model to determine the optimal regulatory capital ratio within the framework of prudential banking regulation. To this end, we develop, on the one hand, a classification model whose purpose is to determine the impact of capital ratios on the probability of bank default, and, on the other hand, a regression model aimed at assessing the costs to banks’ performance associated with increased capital requirements. Using various interpretability tools (permutation importance, Shapley values, partial dependence plots, accumulated local effects), we found the following optimal values: 15% for the capital adequacy ratio and 10% for the leverage ratio. The determination of these values relies on highlighting the non-linear effects and interaction effects that characterize the relationships between the various variables studied.
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

94

The aim of this article is to illustrate the usefulness of interpretable machine learning methods in the specific case of banking economics. In particular, we rely on a gradient boosting model to determine the optimal regulatory capital ratio within the framework of prudential banking regulation. To this end, we develop, on the one hand, a classification model whose purpose is to determine the impact of capital ratios on the probability of bank default, and, on the other hand, a regression model aimed at assessing the costs to banks’ performance associated with increased capital requirements. Using various interpretability tools (permutation importance, Shapley values, partial dependence plots, accumulated local effects), we found the following optimal values: 15% for the capital adequacy ratio and 10% for the leverage ratio. The determination of these values relies on highlighting the non-linear effects and interaction effects that characterize the relationships between the various variables studied.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025