R Deep Learning Projects

Liu, Yuxi (Hayden)

R Deep Learning Projects ['Liu, Yuxi (Hayden)', 'Maldonado, Pablo'] - p.

5 real-world projects to help you master deep learning conceptsAbout This BookMaster the different deep learning paradigms and build real-world projects related to text generation, sentiment analysis, fraud detection, and moreGet to grips with R's impressive range of Deep Learning libraries and frameworks such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vecPractical projects that show you how to implement different neural networks with helpful tips, tricks, and best practicesWho This Book Is ForMachine learning professionals and data scientists looking to master deep learning by implementing practical projects in R will find this book a useful resource. A knowledge of R programming and the basic concepts of deep learning is required to get the best out of this book.What You Will LearnInstrument Deep Learning models with packages such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vecApply neural networks to perform handwritten digit recognition using MXNetGet the knack of CNN models, Neural Network API, Keras, and TensorFlow for traffic sign classificationImplement credit card fraud detection with AutoencodersMaster reconstructing images using variational autoencodersWade through sentiment analysis from movie reviewsRun from past to future and vice versa with bidirectional Long Short-Term Memory (LSTM) networksUnderstand the applications of Autoencoder Neural Networks in clustering and dimensionality reductionIn DetailR is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. Deep Learning, as we all know, is one of the trending topics today, and is finding practical applications in a lot of domains.This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text generation, and sentiment analysis. You'll learn how to train effective neural networks in R—including convolutional neural networks, recurrent neural networks, and LSTMs—and apply them in practical scenarios. The book also highlights how neural networks can be trained using GPU capabilities. You will use popular R libraries and packages—such as MXNetR, H2O, deepnet, and more—to implement the projects. By the end of this book, you will have a better understanding of deep learning concepts and techniques and how to use them in a practical setting.Style and approachThis book's unique, learn-as-you-do approach ensures the reader builds on his understanding of deep learning progressively with each project. This book is designed in such a way that implementing each project will empower you with a unique skillset and enable you to implement the next project more confidently.

9781788478403


PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025