R Deep Learning Projects (notice n° 70301)

détails MARC
000 -LEADER
fixed length control field 03638cam a2200289zu 4500
003 - CONTROL NUMBER IDENTIFIER
control field FRCYB88856723
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250107230134.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250108s2018 fr | o|||||0|0|||eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781788478403
035 ## - SYSTEM CONTROL NUMBER
System control number FRCYB88856723
040 ## - CATALOGING SOURCE
Original cataloging agency FR-PaCSA
Language of cataloging en
Transcribing agency
Description conventions rda
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Liu, Yuxi (Hayden)
245 01 - TITLE STATEMENT
Title R Deep Learning Projects
Statement of responsibility, etc. ['Liu, Yuxi (Hayden)', 'Maldonado, Pablo']
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Name of producer, publisher, distributor, manufacturer Packt Publishing
Date of production, publication, distribution, manufacture, or copyright notice 2018
300 ## - PHYSICAL DESCRIPTION
Extent p.
336 ## - CONTENT TYPE
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type code c
Source rdamdedia
338 ## - CARRIER TYPE
Carrier type code c
Source rdacarrier
520 ## - SUMMARY, ETC.
Summary, etc. 5 real-world projects to help you master deep learning conceptsAbout This BookMaster the different deep learning paradigms and build real-world projects related to text generation, sentiment analysis, fraud detection, and moreGet to grips with R's impressive range of Deep Learning libraries and frameworks such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vecPractical projects that show you how to implement different neural networks with helpful tips, tricks, and best practicesWho This Book Is ForMachine learning professionals and data scientists looking to master deep learning by implementing practical projects in R will find this book a useful resource. A knowledge of R programming and the basic concepts of deep learning is required to get the best out of this book.What You Will LearnInstrument Deep Learning models with packages such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vecApply neural networks to perform handwritten digit recognition using MXNetGet the knack of CNN models, Neural Network API, Keras, and TensorFlow for traffic sign classificationImplement credit card fraud detection with AutoencodersMaster reconstructing images using variational autoencodersWade through sentiment analysis from movie reviewsRun from past to future and vice versa with bidirectional Long Short-Term Memory (LSTM) networksUnderstand the applications of Autoencoder Neural Networks in clustering and dimensionality reductionIn DetailR is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. Deep Learning, as we all know, is one of the trending topics today, and is finding practical applications in a lot of domains.This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text generation, and sentiment analysis. You'll learn how to train effective neural networks in R—including convolutional neural networks, recurrent neural networks, and LSTMs—and apply them in practical scenarios. The book also highlights how neural networks can be trained using GPU capabilities. You will use popular R libraries and packages—such as MXNetR, H2O, deepnet, and more—to implement the projects. By the end of this book, you will have a better understanding of deep learning concepts and techniques and how to use them in a practical setting.Style and approachThis book's unique, learn-as-you-do approach ensures the reader builds on his understanding of deep learning progressively with each project. This book is designed in such a way that implementing each project will empower you with a unique skillset and enable you to implement the next project more confidently.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Liu, Yuxi (Hayden)
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Maldonado, Pablo
856 40 - ELECTRONIC LOCATION AND ACCESS
Access method Cyberlibris
Uniform Resource Identifier <a href="https://international.scholarvox.com/netsen/book/88856723">https://international.scholarvox.com/netsen/book/88856723</a>
Electronic format type text/html
Host name

Pas d'exemplaire disponible.

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025