De l'apprentissage d'ordonnancement à l'adaptation au contexte (notice n° 402286)
[ vue normale ]
000 -LEADER | |
---|---|
fixed length control field | 02355cam a2200313 4500500 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20250119075247.0 |
041 ## - LANGUAGE CODE | |
Language code of text/sound track or separate title | fre |
042 ## - AUTHENTICATION CODE | |
Authentication code | dc |
100 10 - MAIN ENTRY--PERSONAL NAME | |
Personal name | Laporte, Léa |
Relator term | author |
245 00 - TITLE STATEMENT | |
Title | De l'apprentissage d'ordonnancement à l'adaptation au contexte |
260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
Date of publication, distribution, etc. | 2013.<br/> |
500 ## - GENERAL NOTE | |
General note | 51 |
520 ## - SUMMARY, ETC. | |
Summary, etc. | Les moteurs de recherche géoréférencés utilisent des algorithmes d’ordonnancement complexes, prenant en compte le contexte d’utilisation, l’e-reputation et les réseaux sociaux, pour classer pertinemment les lieux vis-à-vis d’une requête. Or, comprendre les critères de sélection des utilisateurs et d’ordonnancement des moteurs est crucial pour les entreprises. Nous présentons le principe de l’optimisation de l’ordonnancement sur les moteurs de recherche et les approches et algorithmes existants. Nous montrons qu’ils sont limités et non adaptés au géoréférencement. Nous proposons une amélioration de l’évaluation de la pertinence et une méthodologie d’adaptation aux requêtes utilisant la sélection de variables embarquée. |
520 ## - SUMMARY, ETC. | |
Summary, etc. | Local search engines use complex learning to rank algorithms to rank places according to a query by taking into account the user environment, the places e-reputation and social networks information. In parallel, the understanding of how users search or which criteria are used to rank results become a key issue for companies. In this paper, we present an overview of existing learning to rank approaches and algorithms. We show that these approaches may not be accurate when dealing with local data. We propose new methods to evaluate relevance and to adapt ranking to queries by using an embedded feature selection algorithm. |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | ordonnancement |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | sélection de variables |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | recherche d'information |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | apprentissage automatique |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | adaptation aux requêtes |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | modèles de pertinence |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | learning to rank |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | query-dependent ranking |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | feature selection |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | information retrieval |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | relevance models |
690 ## - LOCAL SUBJECT ADDED ENTRY--TOPICAL TERM (OCLC, RLIN) | |
Topical term or geographic name as entry element | machine learning |
786 0# - DATA SOURCE ENTRY | |
Note | Document numérique | 16 | 1 | 2013-05-15 | p. 97-121 | 1279-5127 |
856 41 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://shs.cairn.info/revue-document-numerique-2013-1-page-97?lang=fr&redirect-ssocas=7080">https://shs.cairn.info/revue-document-numerique-2013-1-page-97?lang=fr&redirect-ssocas=7080</a> |
Pas d'exemplaire disponible.
Réseaux sociaux