De l'apprentissage d'ordonnancement à l'adaptation au contexte
Type de matériel :
51
Les moteurs de recherche géoréférencés utilisent des algorithmes d’ordonnancement complexes, prenant en compte le contexte d’utilisation, l’e-reputation et les réseaux sociaux, pour classer pertinemment les lieux vis-à-vis d’une requête. Or, comprendre les critères de sélection des utilisateurs et d’ordonnancement des moteurs est crucial pour les entreprises. Nous présentons le principe de l’optimisation de l’ordonnancement sur les moteurs de recherche et les approches et algorithmes existants. Nous montrons qu’ils sont limités et non adaptés au géoréférencement. Nous proposons une amélioration de l’évaluation de la pertinence et une méthodologie d’adaptation aux requêtes utilisant la sélection de variables embarquée.
Local search engines use complex learning to rank algorithms to rank places according to a query by taking into account the user environment, the places e-reputation and social networks information. In parallel, the understanding of how users search or which criteria are used to rank results become a key issue for companies. In this paper, we present an overview of existing learning to rank approaches and algorithms. We show that these approaches may not be accurate when dealing with local data. We propose new methods to evaluate relevance and to adapt ranking to queries by using an embedded feature selection algorithm.
Réseaux sociaux