Image de Google Jackets
Vue normale Vue MARC vue ISBD

Heterogeneity and cross-sectional dependence in panels: Heterogeneous vs. homogeneous estimators

Par : Contributeur(s) : Type de matériel : TexteTexteLangue : français Détails de publication : 2021. Sujet(s) : Ressources en ligne : Abrégé : This paper focuses on the comparison of homogeneous and heterogeneous panel data estimators, including partially heterogeneous ones, in the presence of cross-sectional dependence generated by common factors and spatial error dependence. Our specifications allow us to consider and contrast weak cross-sectional dependence and strong cross-sectional dependence in a general linear heterogeneous panel data model. An overview of the estimation procedures, including heterogeneous, homogeneous, and partially heterogeneous estimators, is presented. Then, an extensive Monte Carlo study is conducted using a general framework encompassing recent contributions in the literature, especially in terms of considering common factors and spatial dependence simultaneously. Our simulation results show that, even for small individual and time dimensions, heterogeneous estimators perform better in terms of bias, root mean squared error, size, and size-adjusted power compared to homogeneous estimators. Lastly, the superiority of the heterogeneous estimators is confirmed by an empirical application relating fiscal decentralization and government size in 22 OECD countries over the period 1973–2017. JEL classification codes: C13, C23
Tags de cette bibliothèque : Pas de tags pour ce titre. Connectez-vous pour ajouter des tags.
Evaluations
    Classement moyen : 0.0 (0 votes)
Nous n'avons pas d'exemplaire de ce document

73

This paper focuses on the comparison of homogeneous and heterogeneous panel data estimators, including partially heterogeneous ones, in the presence of cross-sectional dependence generated by common factors and spatial error dependence. Our specifications allow us to consider and contrast weak cross-sectional dependence and strong cross-sectional dependence in a general linear heterogeneous panel data model. An overview of the estimation procedures, including heterogeneous, homogeneous, and partially heterogeneous estimators, is presented. Then, an extensive Monte Carlo study is conducted using a general framework encompassing recent contributions in the literature, especially in terms of considering common factors and spatial dependence simultaneously. Our simulation results show that, even for small individual and time dimensions, heterogeneous estimators perform better in terms of bias, root mean squared error, size, and size-adjusted power compared to homogeneous estimators. Lastly, the superiority of the heterogeneous estimators is confirmed by an empirical application relating fiscal decentralization and government size in 22 OECD countries over the period 1973–2017. JEL classification codes: C13, C23

PLUDOC

PLUDOC est la plateforme unique et centralisée de gestion des bibliothèques physiques et numériques de Guinée administré par le CEDUST. Elle est la plus grande base de données de ressources documentaires pour les Étudiants, Enseignants chercheurs et Chercheurs de Guinée.

Adresse

627 919 101/664 919 101

25 boulevard du commerce
Kaloum, Conakry, Guinée

Réseaux sociaux

Powered by Netsen Group @ 2025